Do you want to publish a course? Click here

Measuring nanomechanical motion with an imprecision far below the standard quantum limit

214   0   0.0 ( 0 )
 Added by Georg Anetsberger
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a transducer of nanomechanical motion based on cavity enhanced optical near-fields capable of achieving a shot-noise limited imprecision more than 10 dB below the standard quantum limit (SQL). Residual background due to fundamental thermodynamical frequency fluctuations allows a total imprecision 3 dB below the SQL at room temperature (corresponding to 600 am/Hz^(1/2) in absolute units) and is known to reduce to negligible values for moderate cryogenic temperatures. The transducer operates deeply in the quantum backaction dominated regime, prerequisite for exploring quantum backaction, measurement-induced squeezing and accessing sub-SQL sensitivity using backaction evading techniques.



rate research

Read More

Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. For example, if the imprecision of a measurement of an oscillators position is pushed below the standard quantum limit (SQL), quantum mechanics demands that the motion of the oscillator be perturbed by an amount larger than the SQL. Minimizing this quantum backaction noise and nonfundamental, or technical, noise requires an information efficient measurement. Here we integrate a microwave cavity optomechanical system and a nearly noiseless amplifier into an interferometer to achieve an imprecision below the SQL. As the microwave interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN/rt(Hz). In addition, the demonstrated efficient measurement is a critical step towards entangling mechanical oscillators with other quantum systems.
We investigate the prospect of enhancing the phase sensitivity of atom interferometers in the Mach-Zehnder configuration with squeezed light. Ultimately, this enhancement is achieved by transferring the quantum state of squeezed light to one or more of the atomic input beams, thereby allowing operation below the standard quantum limit. We analyze in detail three specific schemes that utilize (1) single-mode squeezed optical vacuum (i.e. low frequency squeezing), (2) two-mode squeezed optical vacuum (i.e. high frequency squeezing) transferred to both atomic inputs, and (3) two-mode squeezed optical vacuum transferred to a single atomic input. Crucially, our analysis considers incomplete quantum state transfer (QST) between the optical and atomic modes, and the effects of depleting the initially-prepared atomic source. Unsurprisingly, incomplete QST degrades the sensitivity in all three schemes. We show that by measuring the transmitted photons and using information recycling [Phys. Rev. Lett. 110, 053002 (2013)], the degrading effects of incomplete QST on the sensitivity can be substantially reduced. In particular, information recycling allows scheme (2) to operate at the Heisenberg limit irrespective of the QST efficiency, even when depletion is significant. Although we concentrate on Bose-condensed atomic systems, our scheme is equally applicable to ultracold thermal vapors.
We present a design for a new microresonator whose geometry is optimized to maximize sub-Standard Quantum Limit (SQL) performance. The new design is predicted to have thermal noise well below the SQL across a broad range of frequencies when operated at 10K. The performance of this designed microresonator will allow it to serve as a test-bed for quantum non-demolition measurements, and to open new regimes of precision measurement that are relevant for many practical sensing applications, including advanced gravitational wave detectors.
We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.
Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling quadratically with the number of probe particles. At the same time, no-go results have shown that generic, uncorrelated noise limits the quantum advantage to a constant factor. In frequency estimation scenarios, however, there are exceptions to this rule and, in particular, it has been found that transversal dephasing does allow for a scaling quantum advantage. Yet, it has remained unclear whether such exemptions can be exploited in practical scenarios. Here, we argue that the transversal-noise model applies to the setting of recent magnetometry experiments and show that a scaling advantage can be maintained with one-axis-twisted spin-squeezed states and Ramsey-interferometry-like measurements. This is achieved by exploiting the geometry of the setup that, as we demonstrate, has a strong influence on the achievable quantum enhancement for experimentally feasible parameter settings. When, in addition to the dominant transversal noise, other sources of decoherence are present, the quantum advantage is asymptotically bounded by a constant, but this constant may be significantly improved by exploring the geometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا