Do you want to publish a course? Click here

Nanomechanical motion measured with precision beyond the standard quantum limit

225   0   0.0 ( 0 )
 Added by John Teufel
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. For example, if the imprecision of a measurement of an oscillators position is pushed below the standard quantum limit (SQL), quantum mechanics demands that the motion of the oscillator be perturbed by an amount larger than the SQL. Minimizing this quantum backaction noise and nonfundamental, or technical, noise requires an information efficient measurement. Here we integrate a microwave cavity optomechanical system and a nearly noiseless amplifier into an interferometer to achieve an imprecision below the SQL. As the microwave interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN/rt(Hz). In addition, the demonstrated efficient measurement is a critical step towards entangling mechanical oscillators with other quantum systems.



rate research

Read More

We demonstrate a transducer of nanomechanical motion based on cavity enhanced optical near-fields capable of achieving a shot-noise limited imprecision more than 10 dB below the standard quantum limit (SQL). Residual background due to fundamental thermodynamical frequency fluctuations allows a total imprecision 3 dB below the SQL at room temperature (corresponding to 600 am/Hz^(1/2) in absolute units) and is known to reduce to negligible values for moderate cryogenic temperatures. The transducer operates deeply in the quantum backaction dominated regime, prerequisite for exploring quantum backaction, measurement-induced squeezing and accessing sub-SQL sensitivity using backaction evading techniques.
Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling quadratically with the number of probe particles. At the same time, no-go results have shown that generic, uncorrelated noise limits the quantum advantage to a constant factor. In frequency estimation scenarios, however, there are exceptions to this rule and, in particular, it has been found that transversal dephasing does allow for a scaling quantum advantage. Yet, it has remained unclear whether such exemptions can be exploited in practical scenarios. Here, we argue that the transversal-noise model applies to the setting of recent magnetometry experiments and show that a scaling advantage can be maintained with one-axis-twisted spin-squeezed states and Ramsey-interferometry-like measurements. This is achieved by exploiting the geometry of the setup that, as we demonstrate, has a strong influence on the achievable quantum enhancement for experimentally feasible parameter settings. When, in addition to the dominant transversal noise, other sources of decoherence are present, the quantum advantage is asymptotically bounded by a constant, but this constant may be significantly improved by exploring the geometry.
Parameter estimation is of fundamental importance in areas from atomic spectroscopy and atomic clocks to gravitational wave detection. Entangled probes provide a significant precision gain over classical strategies in the absence of noise. However, recent results seem to indicate that any small amount of realistic noise restricts the advantage of quantum strategies to an improvement by at most a multiplicative constant. Here, we identify a relevant scenario in which one can overcome this restriction and attain superclassical precision scaling even in the presence of uncorrelated noise. We show that precision can be significantly enhanced when the noise is concentrated along some spatial direction, while the Hamiltonian governing the evolution which depends on the parameter to be estimated can be engineered to point along a different direction. In the case of perpendicular orientation, we find superclassical scaling and identify a state which achieves the optimum.
63 - K. Eckert , P. Hyllus , D. Bruss 2005
We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.
195 - P.H. Kim , B.D. Hauer , C. Doolin 2016
Mechanical transduction of torque has been key to probing a number of physical phenomena, such as gravity, the angular momentum of light, the Casimir effect, magnetism, and quantum oscillations. Following similar trends as mass and force sensing, mechanical torque sensitivity can be dramatically improved by scaling down the physical dimensions, and therefore moment of inertia, of a torsional spring. Yet now, through precision nanofabrication and sub-wavelength cavity optomechanics, we have reached a point where geometric optimization can only provide marginal improvements to torque sensitivity. Instead, nanoscale optomechanical measurements of torque are overwhelmingly hindered by thermal noise. Here we present cryogenic measurements of a cavity-optomechanical torsional resonator cooled in a dilution refrigerator to a temperature of 25 mK, corresponding to an average phonon occupation of <n> = 35, that demonstrate a record-breaking torque sensitivity of 2.9 yNm/Hz^{1/2}. This a 270-fold improvement over previous optomechanical torque sensors and just over an order of magnitude from its standard quantum limit. Furthermore, we demonstrate that mesoscopic test samples, such as micron-scale superconducting disks, can be integrated with our cryogenic optomechanical torque sensing platform, in contrast to other cryogenic optomechanical devices, opening the door for mechanical torque spectroscopy of intrinsically quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا