Do you want to publish a course? Click here

Breaking the sigma_8-Omega_m degeneracy using the clustering of high-z X-ray AGN

143   0   0.0 ( 0 )
 Added by Manolis Plionis Dr.
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The clustering of X-ray selected AGN appears to be a valuable tool for extracting cosmological information. Using the recent high-precision angular clustering results of ~30000 XMM-Newton soft (0.5-2 keV) X-ray sources (Ebrero et al. 2009), which have a median redshift of $zsim 1$, and assuming a flat geometry, a constant in comoving coordinates AGN clustering evolution and the AGN bias evolution model of Basilakos et al. (2008), we manage to break the Omega_m-sigma_8 degeneracy. The resulting cosmological constraints are: Omega_m=0.27 (+0.03 -0.05), w=-0.90 (+0.10 -0.16) and sigma_8=0.74 (+0.14 -0.12), while the dark matter host halo mass, in which the X-ray selected AGN are presumed to reside, is M=2.50 (+0.50 -1.50) X 10^13 h^{-1} M(solar). For the constant Lambda model (w=-1) we find Omega_m=0.24 (+- 0.06) and sigma_8=0.83 (+0.11 -0.16), in good agreement with recent studies based on cluster abundances, weak lensing and the CMB, but in disagreement with the recent bulk flow analysis.



rate research

Read More

The cosmological term, $Lambda$, was introduced $104$ years ago by Einstein in his gravitational field equations. Whether $Lambda$ is a rigid quantity or a dynamical variable in cosmology has been a matter of debate for many years, especially after the introduction of the general notion of dark energy (DE). $Lambda$ is associated to the vacuum energy density, $rho_{rm vac}$, and one may expect that it evolves slowly with the cosmological expansion. Herein we present a devoted study testing this possibility using the promising class of running vacuum models (RVMs). We use a large string $SNIa+BAO+H(z)+LSS+CMB$ of modern cosmological data, in which for the first time the CMB part involves the full Planck 2018 likelihood for these models. We test the dependence of the results on the threshold redshift $z_*$ at which the vacuum dynamics is activated in the recent past and find positive signals up to $sim4.0sigma$ for $z_*simeq 1$. The RVMs prove very competitive against the standard $Lambda$CDM model and give a handle for solving the $sigma_8$ tension and alleviating the $H_0$ one.
The angular correlation function is a powerful tool for deriving the clustering properties of AGN and hence the mass of the corresponding dark matter halos in which they reside. However, studies based on the application of the angular correlation function on X-ray samples, yield results apparently inconsistent with those based on the direct estimation of the spatial correlation function. The goal of the present paper is to attempt to investigate this issue by analysing a well defined sample. To this end we use the hard-band (2-10 keV) X-ray selected sources of the Chandra AEGIS fields, chosen because of the availability of accurately derived flux sensitivity maps. In particular we use the 186 hard-band sources with spectroscopic redshifts in the range z=0.3-1.3, a range selected in order to contain the bulk of the AGN while minimizing the contribution of unknown clustering and luminosity evolution from very high redshifts. Using the projected spatial auto-correlation function, we derive a clustering comoving length of 5.4+-1.0 Mpc (for gamma=1.8), consistent with results in the literature. We further derive the angular correlation function and the corresponding spatial clustering length using the Limbers inversion equation and a novel parametrization of the clustering evolution model that also takes into account the bias evolution of the host dark matter halo. The Limbers inverted spatial comoving clustering length of 5.5+-1.2 Mpc at a median redshift of z~0.75, matches the directly measured one, from the spatial correlation function analysis, but for a significant non-linear contribution to the growing mode of perturbations, estimated independently from literature results of x_0 at different redshifts. Therefore, using this sample of X-ray AGN and our clustering evolution parametrization we have found an excellent consistency between the angular and spatial clustering analysis.
We present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D CYCLOPS code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the post-shock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the pre-shock region. We carried out detailed post-shock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the post-shock region temperature and density profiles, we assumed equipartition between ions and electrons, took into account the white dwarf gravitational potential, the finite size of the magnetosphere and a dipole-like magnetic field geometry, and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.
We derive cosmological constraints on the matter density, om, and the amplitude of fluctuations, sig, using $mathtt{GalWCat19}$, a catalog of 1800 galaxy clusters we identified in the Sloan Digital Sky Survey-DR13 spectroscopic data set using our GalWeight technique to determine cluster membership citep{Abdullah18,Abdullah19}. By analyzing a subsample of 756 clusters in a redshift range of $0.045leq z leq 0.125$ and virial masses of $Mgeq 0.8times10^{14}$ hm ~with mean redshift of $z = 0.085$, we obtain om ~$=0.310^{+0.023}_{-0.027} pm 0.041$ (systematic) and sig ~$=0.810^{+0.031}_{-0.036}pm 0.035$ (systematic), with a cluster normalization relation of $sigma_8= 0.43 Omega_m^{-0.55}$. There are several unique aspects to our approach: we use the largest spectroscopic data set currently available, and we assign membership using the GalWeight technique which we have shown to be very effective at simultaneously maximizing the number of {it{bona fide}} cluster members while minimizing the number of contaminating interlopers. Moreover, rather than employing scaling relations, we calculate cluster masses individually using the virial mass estimator. Since $mathtt{GalWCat19}$ is a low-redshift cluster catalog we do not need to make any assumptions about evolution either in cosmological parameters or in the properties of the clusters themselves. Our constraints on om ~and sig ~are consistent and very competitive with those obtained from non-cluster abundance cosmological probes such as Cosmic Microwave Background (CMB), Baryonic Acoustic Oscillation (BAO), and supernovae (SNe). The joint analysis of our cluster data with Planck18+BAO+Pantheon gives om ~$=0.315^{+0.013}_{-0.011}$ and sig ~$=0.810^{+0.011}_{-0.010}$.
Primordial black holes might comprise a significant fraction of the dark matter in the Universe and be responsible for the gravitational wave signals from black hole mergers observed by the LIGO/Virgo collaboration. The spatial clustering of primordial black holes might affect their merger rates and have a significant impact on the constraints on their masses and abundances. We provide some analytical treatment of the primordial black hole spatial clustering evolution, compare our results with some of the existing N-body numerical simulations and discuss the implications for the black hole merger rates. If primordial black holes contribute to a small fraction of the dark matter, primordial black hole clustering is not relevant. On the other hand, for a large contribution to the dark matter, we argue that the clustering may increase the late time Universe merger rate to a level compatible with the LIGO/Virgo detection rate. As for the early Universe merger rate of black hole binaries formed at primordial epochs, clustering alleviates the LIGO/Virgo constraints, but does not evade them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا