Do you want to publish a course? Click here

Fourteen Months of Observations of the Possible Super-Chandrasekhar Mass Type Ia Supernova 2009dc

143   0   0.0 ( 0 )
 Added by Jeffrey Silverman
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present and analyse optical photometry and spectra of the extremely luminous and slowly evolving Type Ia supernova (SN Ia) 2009dc, and offer evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD) progenitor. Optical spectra of SN 2007if, a similar object, are also shown. SN 2009dc had one of the most slowly evolving light curves ever observed for a SN Ia, with a rise time of ~23 days and Delta m_15(B) = 0.72 mag. We calculate a lower limit to the peak bolometric luminosity of ~2.4e43 erg/s, though the actual value is likely almost 40% larger. Optical spectra of SN 2009dc and SN 2007if obtained near maximum brightness exhibit strong C II features (indicative of a significant amount of unburned material), and the post-maximum spectra are dominated by iron-group elements. All of our spectra of SN 2009dc and SN 2007if also show low expansion velocities. However, we see no strong evidence in SN 2009dc for a velocity plateau near maximum light like the one seen in SN 2007if (Scalzo et al. 2010). The high luminosity and low expansion velocities of SN 2009dc lead us to derive a possible WD progenitor mass of more than 2 M_Sun and a Ni-56 mass of about 1.4-1.7 M_Sun. We propose that the host galaxy of SN 2009dc underwent a gravitational interaction with a neighboring galaxy in the relatively recent past. This may have led to a sudden burst of star formation which could have produced the SC WD progenitor of SN 2009dc and likely turned the neighboring galaxy into a post-starburst galaxy. No published model seems to match the extreme values observed in SN 2009dc, but simulations do show that such massive progenitors can exist (likely as a result of the merger of two WDs) and can possibly explode as SC SNe Ia.



rate research

Read More

Among Type Ia supernovae (SNe~Ia) exist a class of overluminous objects whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe--2009dc, 2011aa, and 2012dn--observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN~2011aa being amongst the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of normal SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Angstroms) are only half as bright as SN~2009dc, implying a smaller 56Ni yield. While not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and 56Ni masses of SNe 2011aa and 2012dn and fully explain their high UV luminosities.
We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is $Delta m_{15}(B)=0.65pm 0.03$, which is one of the slowest among SNe Ia. The peak $V$-band absolute magnitude is $M_{V}=-19.90pm 0.15$ mag even if the host extinction is $A_{V}=0$ mag. It reaches $M_{V}=-20.19pm 0.19$ mag for the host extinction of $A_{V}=0.29$ mag as inferred from the observed Na {sc i} D line absorption in the host. Our $JHK_{s}$-band photometry shows that the SN is one of the most luminous SNe Ia also in near-infrared wavelengths. These results indicate that SN 2009dc belongs to the most luminous class of SNe Ia, like SN 2003fg and SN 2006gz. We estimate the ejected $^{56}$Ni mass of $1.2pm 0.3$ $Msun$ for no host extinction case (or 1.6$pm$ 0.4 M$_{odot}$ for the host extinction of $A_{V}=0.29$ mag). The C {sc ii} $lambda$6580 absorption line keeps visible until a week after maximum, which diminished in SN 2006gz before its maximum brightness. The line velocity of Si {sc ii} $lambda$6355 is about 8000 km s$^{-1}$ around the maximum, being considerably slower than that of SN 2006gz, while comparable to that of SN 2003fg. The velocity of the C {sc ii} line is almost comparable to that of the Si {sc ii}. The presence of the carbon line suggests that thick unburned C+O layers remain after the explosion. SN 2009dc is a plausible candidate of the super-Chandrasekhar mass SNe Ia.
100 - C. Ashall , J. Lu , E. Y. Hsiao 2021
We present a multi-wavelength photometric and spectroscopic analysis of thirteen Super-Chandrasekhar Mass/2003fg-like type Ia Supernova (SNe~Ia). Nine of these objects were observed by the Carnegie Supernova Project. 2003fg-like have slowly declining light curves ($Delta m_{15}$(B) $<$1.3 mag), and peak absolute $B$-band magnitudes between $-19<M_{B}<-21$~mag. Many 2003fg-like are located in the same part of the luminosity width relation as normal SNe~Ia. In the optical $B$ and $V$ bands, 2003fg-like look like normal SNe~Ia, but at redder wavelengths they diverge. Unlike other luminous SNe~Ia, 2003fg-like generally have only one $i$-band maximum which peaks after the epoch of $B$-band maximum, while their NIR light curve rise times can be $gtrsim$40 days longer than those of normal SNe~Ia. They are also at least one magnitude brighter in the NIR bands than normal SNe~Ia, peaking above $M_H < -19$~mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark energy experiments. Spectroscopically, 2003fg-like exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000--12000~km/s) in SiII $lambda$6355 velocities at maximum light with no rapid early velocity decline, and no clear $H$-band break at +10~d, e. We find that SNe with a larger pseudo equivalent width of CII at maximum light have lower SiII $lambda$6355 velocities and slower declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like. The explosion of a C-O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core degenerate scenario.
144 - W. -M. Liu , W. -C. Chen , B. Wang 2010
Recent discovery of several overluminous type Ia supernovae (SNe Ia) indicates that the explosive masses of white dwarfs may significantly exceed the canonical Chandrasekhar mass limit. Rapid differential rotation may support these massive white dwarfs. Based on the single-degenerate scenario, and assuming that the white dwarfs would differentially rotate when the accretion rate $dot{M}>3times 10^{-7}M_{odot}rm yr^{-1}$, employing Eggletons stellar evolution code we have performed the numerical calculations for $sim$ 1000 binary systems consisting of a He star and a CO white dwarf (WD). We present the initial parameters in the orbital period - helium star mass plane (for WD masses of $1.0 M_{odot}$ and $1.2 M_{odot}$, respectively), which lead to super-Chandrasekhar mass SNe Ia. Our results indicate that, for an initial massive WD of $1.2 M_{odot}$, a large number of SNe Ia may result from super-Chandrasekhar mass WDs, and the highest mass of the WD at the moment of SNe Ia explosion is 1.81 $M_odot$, but very massive ($>1.85M_{odot}$) WDs cannot be formed. However, when the initial mass of WDs is $1.0 M_{odot}$, the explosive masses of SNe Ia are nearly uniform, which is consistent with the rareness of super-Chandrasekhar mass SNe Ia in observations.
The Type Ia supernova (SN Ia) LSQ14fmg exhibits exaggerated properties which may help to reveal the origin of the super-Chandrasekhar (or 03fg-like) group. The optical spectrum is typical of a 03fg-like SN Ia, but the light curves are unlike those of any SNe Ia observed. The light curves of LSQ14fmg rise extremely slowly. At -23 rest-frame days relative to B-band maximum, LSQ14fmg is already brighter than $M_V$=-19 mag before host extinction correction. The observed color curves show a flat evolution from the earliest observation to approximately one week after maximum. The near-infrared light curves peak brighter than -20.5 mag in the J and H bands, far more luminous than any 03fg-like SNe Ia with near-infrared observations. At one month past maximum, the optical light curves decline rapidly. The early, slow rise and flat color evolution are interpreted to result from an additional excess flux from a power source other than the radioactive decay of the synthesized $^{56}Ni$. The excess flux matches the interaction with a typical superwind of an asymptotic giant branch (AGB) star in density structure, mass-loss rate, and duration. The rapid decline starting at around one month past B-band maximum may be an indication of rapid cooling by active carbon monoxide (CO) formation, which requires a low temperature and high density environment. These peculiarities point to an AGB progenitor near the end of its evolution and the core degenerate scenario as the likely explosion mechanism for LSQ14fmg.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا