No Arabic abstract
Detailed study of the LDOS associated with the surface-state-band near a step-edge of the strong topological-insulator Bi2Te3, reveal a one-dimensional bound state that runs parallel to the stepedge and is bound to it at some characteristic distance. This bound state is clearly observed in the bulk gap region, while it becomes entangled with the oscillations of the warped surface band at high energy, and with the valence band states near the Dirac point. Using the full effective Hamiltonian proposed by Zhang et al., we obtain a closed formula for this bound state that fits the data and provide further insight into the general topological properties of the electronic structure of the surface band near strong structural defects.
Scanning tunneling spectroscopy studies on high-quality Bi$_2$Te$_3$ crystals exhibit perfect correspondence to ARPES data, hence enabling identification of different regimes measured in the local density of states (LDOS). Oscillations of LDOS near a step are analyzed. Within the main part of the surface band oscillations are strongly damped, supporting the hypothesis of topological protection. At higher energies, as the surface band becomes concave, oscillations appear which disperse with a particular wave-vector that may result from an unconventional hexagonal warping term.
In this paper we present detailed study of the density of states near defects in Bi$_2$Se$_3$. In particular, we present data on the commonly found triangular defects in this system. While we do not find any measurable quasiparticle scattering interference effects, we do find localized resonances, which can be well fitted by theory once the potential is taken to be extended to properly account for the observed defects. The data together with the fits confirm that while the local density of states around the Dirac point of the electronic spectrum at the surface is significantly disrupted near the impurity by the creation of low-energy resonance state, the Dirac point is not locally destroyed. We discuss our results in terms of the expected protected surface state of topological insulators.
Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral $p_x$ + i$p_y$ wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi$_2$Te$_3$ topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral $p_x$ + i$p_y$ component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and $pi$ coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi$_2$Te$_3$ flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.
Rare earth ions typically exhibit larger magnetic moments than transition metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of topological insulators. Yet, in a recent photoemission study of Eu-doped Bi$_2$Te$_3$ films, the spectra remained gapless down to $T = 20;text{K}$. Here, we scrutinize whether the conditions for a substantial gap formation in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence and confirms a large magnetic moment, consistent with a $4f^7 ; {^8}S_{7/2}$ ground state. At temperatures below $10;text{K}$, bulk magnetometry indicates the onset of antiferromagnetic (AFM) ordering. This is in good agreement with density functional theory, which predicts AFM interactions between the Eu impurities. Our results support the notion that antiferromagnetism can coexist with topological surface states in rare-earth doped Bi$_2$Te$_3$ and call for spectroscopic studies in the kelvin range to look for novel quantum phenomena such as the quantum anomalous Hall effect.
The ferromagnetic topological insulator V:(Bi,Sb)$_2$Te$_3$ has been recently reported as a quantum anomalous Hall (QAH) system. Yet the microscopic origins of the QAH effect and the ferromagnetism remain unclear. One key aspect is the contribution of the V atoms to the electronic structure. Here the valence band of V:(Bi,Sb)$_2$Te$_3$ thin films was probed in an element-specific way by resonant photoemission spectroscopy. The signature of the V $3d$ impurity band was extracted, and exhibits a high density of states near Fermi level. First-principles calculations support the experimental results and indicate the coexistence of ferromagnetic superexchange and double exchange interactions. The observed impurity band is thus expected to contribute to the ferromagnetism via the interplay of different mechanisms.