Do you want to publish a course? Click here

Dyons and Magnetic Monopoles Revisited

122   0   0.0 ( 0 )
 Added by Edward Olszewski
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We construct dyon solutions in SU(N) with topological electric and magnetic charge. Assuming a |Phi|^4-like potential for the Higgs field we show that the mass of the dyons is relatively insensitive to the coupling parameter lambda characterizing the potential. We then apply the methodology of constructing dyon solutions in SU(N) to G2. In order to define the electromagnetic field consistently in the manner that we propose we find that dyon solutions exist only when G2 is considered under the action of its maximal and regular subgroup SU(3). In this case we find two different types of dyons, one of which has properties identical to dyons in SU(3). The other dyon has some properties which are seemingly atypical, e.g. the magnetic charge g_m = 4 pi 3/e, which differs from the t Hooft/Polyakov monopole where g_m = 4 pi 1/e.



rate research

Read More

411 - J. Bjoraker 2000
A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and the ADM mass. The stability of the solutions which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a fractal structure as the cosmological constant approaches zero.
In this review, we discuss recent developments in both the theory and the experimental searches of magnetic monopoles in past, current and future colliders and in the Cosmos. The theoretical models include, apart from the standard Grand Unified Theories, extensions of the Standard Model that admit magnetic monopole solutions with finite energy and masses that can be as light as a few TeV. Specifically, we discuss, among other scenarios, modified Cho-Maison monopoles and magnetic monopoles in (string-inspired, higher derivative) Born-Infeld extensions of the hypercharge sector of the Standard Model. We also outline the conditions for which effective field theories describing the interaction of monopoles with photons are valid and can be used for result interpretation in monopole production at colliders. The experimental part of the review focuses on, past and present, cosmic and collider searches, including the latest bounds on monopole masses and magnetic charges by the ATLAS and MoEDAL experiments at the LHC, as well as prospects for future searches.
109 - Edward A. Olszewski 2015
We construct dyon solutions on a collection of coincident D4-branes, obtained by applying the group of T-duality transformations to a type I SO(32) superstring theory in 10 dimensions. The dyon solutions, which are exact, are obtained from an action consisting of the non-abelian Dirac-Born-Infeld action and Wess-Zumino-like action. When one of the spatial dimensions of the D4-branes is taken to be vanishingly small, the dyons are analogous to the t Hooft/Polyakov monopole residing in a 3+1 dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is re-interpreted as a Higgs boson transforming in the adjoint representation of the gauge group. We next apply a T-duality transformation to the vanishingly small spatial dimension. The result is a collection of D3-branes not all of which are coincident. Two of the D3-branes which are separated from the others acquire intrinsic, finite, curvature and are connected by a wormhole. The dyon possesses electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the Lagrangian density from which the dyon solutions have been obtained does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, i.e. gauge/gravity duality.
110 - Naoki Yamamoto 2020
We show that the presence of a magnetic monopole in position space gives rise to a violation of the fermion number conservation in chiral matter. Using the chiral kinetic theory, we derive a model-independent expression of such a violation in nonequilibrium many-body systems of chiral fermions. In local thermal equilibrium at finite temperature and chemical potential, in particular, this violation is proportional to the chemical potential with a topologically quantized coefficient. These consequences are due to the interplay between the Dirac monopole in position space and the Berry monopole in momentum space. Our mechanism can be applied to study the roles of magnetic monopoles in the nonequilibrium evolution of the early Universe.
We develop topological criteria for the existence of electroweak magnetic monopoles and Z-strings and extend the Kibble mechanism to study their formation during the electroweak phase transition. The distribution of magnetic monopoles produces magnetic fields that have a spectrum $B_lambda propto lambda^{-2}$ where $lambda$ is a smearing length scale. Even as the magnetic monopoles annihilate due to the confining Z-strings, the magnetic field evolves with the turbulent plasma and may be relevant for cosmological observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا