Do you want to publish a course? Click here

AlGaAs/GaAs single electron transistors fabricated without modulation doping

373   0   0.0 ( 0 )
 Added by Andrew Ming See
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have fabricated quantum dot single electron transistors, based on AlGaAs/GaAs heterojunctions without modulation doping, which exhibit clear and stable Coulomb blockade oscillations. The temperature dependence of the Coulomb blockade peak lineshape is well described by standard Coulomb blockade theory in the quantum regime. Bias spectroscopy measurements have allowed us to directly extract the charging energy, and showed clear evidence of excited state transport, confirming that individual quantum states in the dot can be resolved.



rate research

Read More

Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena due to their charge stability and robust electronic properties after thermal cycling. However these devices require a large top-gate which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here we demonstrate rf reflectometry is possible in an undoped SET.
We have realized quantized charge pumping using non-adiabatic single-electron pumps in dopant-free GaAs two-dimensional electron gases (2DEGs). The dopant-free III-V platform allows for ambipolar devices, such as p-i-n junctions, that could be combined with such pumps to form electrically-driven single photon sources. Our pumps operate at up to 0.95 GHz and achieve remarkable performance considering the relaxed experimental conditions: one-gate pumping in zero magnetic field and temperatures up to 5K, driven by a simple RF sine waveform. Fitting to a universal decay cascade model yields values for the figure of merit $delta$ that compare favorably to reported modulation-doped GaAs pumps operating under similar conditions. The devices reported here are already suitable for optoelectronics applications, and with further improvement could offer a route to a current standard that does not require sub-Kelvin temperatures and high magnetic fields.
We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependence of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects that arise from coherent tunneling of electrons in the dot.
499 - X. Dai , S. Zhang , Z. Wang 2016
We demonstrate an efficient core-shell GaAs/AlGaAs nanowire photodetector operating at room temperature. The design of this nanoscale detector is based on a type-I heterostructure combined with a metal-semiconductor-metal (MSM) radial architecture, in which built-in electric fields at the semiconductor heterointerface and at the metal/semiconductor Schottky contact promote photogenerated charge separation, enhancing photosensitivity. The spectral photoconductive response shows that the nanowire supports resonant optical modes in the near-infrared region, which lead to large photocurrent density in agreement with the predictions of electromagnetic and transport computational models. The single nanowire photodetector shows remarkable peak photoresponsivity of 0.57 A/W, comparable to large-area planar GaAs photodetectors on the market, and a high detectivity of 7.2 10^10 cmsqrt{Hz}/W at {lambda}=855 nm. This is promising for the design of a new generation of highly sensitive single nanowire photodetectors by controlling optical mode confinement, bandgap, density of states, and electrode engineering.
A new method to fabricate non-superconducting mesoscopic tunnel junctions by oxidation of Ti is presented. The fabrication process uses conventional electron beam lithography and shadow deposition through an organic resist mask. Superconductivity in Ti is suppressed by performing the deposition under a suitable background pressure. We demonstrate the method by making a single electron transistor which operated at $T < 0.4$ K and had a moderate charge noise of $2.5 times 10^{-3}$ e/$sqrt{mathrm{Hz}}$ at 10 Hz. Based on nonlinearities in the current-voltage characteristics at higher voltages, we deduce the oxide barrier height of approximately 110 mV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا