Do you want to publish a course? Click here

Cosmic Ray Accelerators in the Large Magellanic Cloud

113   0   0.0 ( 0 )
 Added by Yousaf Mahmood Butt
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

I point out a correlation between gamma-ray emissivity and the historical star formation rate in the Large Magellanic Cloud ~12.5 Myr ago. This correlation bolsters the view that CRs in the LMC are accelerated by conglomerations of supernova remnants: i.e. superbubbles and supergiant shells.



rate research

Read More

In this paper, we build from previous work (Bustard et al. 2018) and present simulations of recent (within the past Gyr), magnetized, cosmic ray driven outflows from the Large Magellanic Cloud (LMC), including our first attempts to explicitly use the derived star formation history of the LMC to seed outflow generation. We run a parameter set of simulations for different LMC gas masses and cosmic ray transport treatments, and we make preliminary comparisons to published outflow flux estimates, neutral and ionized hydrogen observations, and Faraday rotation measure maps. We additionally report on the gas mass that becomes unbound from the LMC disk and swept by ram pressure into the Trailing Magellanic Stream. We find that, even for our largest outburst, the mass contribution to the Stream is still quite small, as much of the outflow-turned-halo gas is shielded on the LMCs far-side due to the LMCs primarily face-on infall through the Milky Way halo over the past Gyr. On the LMCs near-side, past outflows have fought an uphill battle against ram pressure, with near-side halo mass being at least a factor of a few smaller than the far-side. Absorption line studies probing only the LMC foreground, then, may be severely underestimating the total mass of the LMC halo formed by outflows.
The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (~100 km/s) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birth places at the very beginning of their parent clusters dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach however is complicated by the large distance to the LMC, which makes accurate proper motion measurements difficult. We use an alternative approach for solving the problem, based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion and thereby to determine their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars which were suggested in the literature as candidate runaway stars. Using archival (Spitzer Space Telescope) data, we found a bow shock associated with one of our program stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ~120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star forming complex.
We present 21 new radio-continuum detections at catalogued planetary nebula (PN) positions in the Large Magellanic Cloud (LMC) using all presently available data from the Australia Telescope Online Archive at 3, 6, 13 and 20 cm. Additionally, 11 previously detected LMC radio PNe are re-examined with $ 7 $ detections confirmed and reported here. An additional three PNe from our previous surveys are also studied. The last of the 11 previous detections is now classified as a compact HII region which makes for a total sample of 31 radio PNe in the LMC. The radio-surface brightness to diameter ($Sigma$-D) relation is parametrised as $Sigma propto {D^{ - beta }}$. With the available 6~cm $Sigma$-$D$ data we construct $Sigma$-$D$ samples from 28 LMC PNe and 9 Small Magellanic Cloud (SMC) radio detected PNe. The results of our sampled PNe in the Magellanic Clouds (MCs) are comparable to previous measurements of the Galactic PNe. We obtain $beta=2.9pm0.4$ for the MC PNe compared to $beta = 3.1pm0.4$ for the Galaxy. For a better insight into sample completeness and evolutionary features we reconstruct the $Sigma$-$D$ data probability density function (PDF). The PDF analysis implies that PNe are not likely to follow linear evolutionary paths. To estimate the significance of sensitivity selection effects we perform a Monte Carlo sensitivity simulation on the $Sigma$-$D$ data. The results suggest that selection effects are significant for values larger than $beta sim 2.6$ and that a measured slope of $beta=2.9$ should correspond to a sensitivity-free value of $sim 3.4$.
124 - Tony Wong , Annie Hughes (2 , 3 2011
We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. We identify clouds as regions of connected CO emission, and find that the distributions of cloud sizes, fluxes and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL propto L^{-2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a clouds kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.
Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Only a handful of such systems have been previously discovered, all within our Galaxy. Here we report the discovery with the Fermi Large Area Telescope (LAT) of a luminous gamma-ray binary in the Large Magellanic Cloud from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. The system has an orbital period of 10.3 days and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0-673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way at radio, optical, X-ray and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا