Do you want to publish a course? Click here

Ultra- and Hyper-compact HII regions at 20 GHz

149   0   0.0 ( 0 )
 Added by Tara Murphy
 Publication date 2010
  fields Physics
and research's language is English
 Authors Tara Murphy




Ask ChatGPT about the research

We present radio and infrared observations of 4 hyper-compact HII regions and 4 ultra-compact HII regions in the southern Galactic plane. These objects were selected from a blind survey for UCHII regions using data from two new radio surveys of the southern sky; the Australia Telescope 20 GHz survey (AT20G) and the 2nd epoch Molonglo Galactic Plane Survey (MGPS-2) at 843 MHz. To our knowledge, this is the first blind radio survey for hyper- and ultra-compact HII regions. We have followed up these sources with the Australia Telescope Compact Array to obtain H70-alpha recombination line measurements, higher resolution images at 20 GHz and flux density measurements at 30, 40 and 95 GHz. From this we have determined sizes and recombination line temperatures as well as modeling the spectral energy distributions to determine emission measures. We have classified the sources as hyper-compact or ultra-compact on the basis of their physical parameters, in comparison with benchmark parameters from the literature. Several of these bright, compact sources are potential calibrators for the Low Frequency Instrument (30-70 GHz) and the 100-GHz channel of the High Frequency Instrument of the Planck satellite mission. They may also be useful as calibrators for the Australia Telescope Compact Array, which lacks good non-variable primary flux calibrators at higher frequencies and in the Galactic plane region. Our spectral energy distributions allow the flux densities within the Planck bands to be determined, although our high frequency observations show that several sources have excess emission at 95 GHz (3 mm) that can not be explained by current models.



rate research

Read More

We have identified 453 compact dense cores in 3 mm continuum emission maps in the ATOMS (ALMA Three-millimeter Observations of Massive Star-forming regions) survey, and compiled three catalogues of high-mass star forming cores. One catalogue, referred to as H/UC-HII catalogue, includes 89 cores that enshroud hyper/ultra compact (H/UC) HII regions as characterized by associated compact H40alpha emission. A second catalogue, referred to as pure s-cHMC, includes 32 candidate Hot Molecular Cores (HMCs) showing rich spectra (N>20lines) of complex organic molecules (COMs) but not associated with H/UC-HII regions. The third catalogue, referred to as pure w-cHMC, includes 58 candidate HMCs with relatively low levels of COM richness and not associated with H/UC-HII regions. These three catalogues of dense cores provide an important foundation for future studies of the early stages of high-mass star formation across the Milky Way. We also find that nearly half of H/UC-HII cores are candidate HMCs. From the number counts of COM-containing and H/UC-HII cores, we suggest that the duration of high-mass protostellar cores showing chemically rich features is at least comparable to the lifetime of H/UC-HII regions. For cores in the H/UC-HII catalogue, the width of the H40alpha line increases as the core size decreases, suggesting that the non-thermal dynamical and/or pressure line-broadening mechanisms dominate on the smaller scales of the H/UC-HII cores.
570 - Kelsey E. Johnson 2001
We report on the detection of optically thick free-free radio sources in the galaxies M33, NGC 253, and NGC 6946 using data in the literature. We interpret these sources as being young, embedded star birth regions, which are likely to be clusters of ultracompact HII regions. All 35 of the sources presented in this article have positive radio spectral indices alpha>0 suggesting an optically thick thermal bremsstrahlung emission arising in the HII region surrounding hot stars. Energy requirements indicate a range of a several to >500 O7V star equivalents powering each HII region. Assuming a Salpeter IMF, this corresponds to integrated stellar masses of 0.1--60,000 Msun. For roughly half of the sources in our sample, there is no obvious optical counterpart, giving further support for their deeply embedded nature. Their luminosities and radio spectral energy distributions are consistent with HII regions having electron densities from 1500 cm^-3 to 15000 cm^-3 and radii of 1 - 7 pc. We suggest that the less luminous of these sources are extragalactic ultracompact HII region complexes, those of intermediate luminosity are similar to W49 in the Galaxy, while the brightest will be counterparts to 30 Doradus. These objects constitute the lower mass range of extragalactic ``ultradense HII regions which we argue are the youngest stages of massive star cluster formation yet observed. This sample is beginning to fill in the continuum of objects between small associations of ultracompact HII regions and the massive extragalactic clusters that may evolve into globular clusters.
85 - Taoling Xie , L. Mundy , S. Vogel 1996
It has been proposed recently that the small size and long lifetime of ultra-compact HII regions (UCHIIs) could be due to pressure confinement if the thermal pressure of the ambient gas is higher than previous estimates. We point out that confinement by thermal pressure alone implies emission measures in excess of observed values. We show that turbulent pressure, inferred from observed non-thermal velocities, is sufficient to confine UC HIIs and explain their longevity. We predict an anti-correlation between the size of UCHIIs and the velocity dispersion of the ambient neutral gas, and show that it is consistent with existing observations.
We present and discuss a new catalogue of 52 compact HII regions in the Small Magellanic Cloud (SMC) and a newly created deep 1420 MHz (lambda=20 cm) radio-continuum image of the N19 region located in the southwestern part of the SMC. The new images were created by merging 1420 MHz radio-continuum archival data from the Australian Telescope Compact Array. The majority of these detected radio compact HII regions have rather flat spectral indices which indicates, as expected, that the dominant emission mechanism is of thermal nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا