No Arabic abstract
Recent studies of scattering amplitudes in planar N=4 SYM theory revealed the existence of a hidden dual superconformal symmetry. Together with the conventional superconformal symmetry it gives rise to powerful restrictions on the planar scattering amplitudes to all loops. We study the general form of the invariants of both symmetries. We first construct an integral representation for the most general dual superconformal invariants and show that it allows a considerable freedom in the choice of the integration measure. We then perform a half-Fourier transform to twistor space, where conventional conformal symmetry is realized locally, derive the resulting conformal Ward identity for the integration measure and show that it admits a unique solution. Thus, the combination of dual and conventional superconformal symmetries, together with invariance under helicity rescalings, completely fixes the form of the invariants. The expressions obtained generalize the known tree and one-loop superconformal invariants and coincide with the recently proposed coefficients of the leading singularities of the scattering amplitudes as contour integrals over Grassmannians.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.
We perform the twistor (half-Fourier) transform of all tree n-particle superamplitudes in N=4 SYM and show that it has a transparent geometric interpretation. We find that the N^kMHV amplitude is supported on a set of (2k+1) intersecting lines in twistor space and demonstrate that the corresponding line moduli form a lightlike (2k+1)-gon in moduli space. This polygon is triangulated into two kinds of lightlike triangles lying in different planes. We formulate simple graphical rules for constructing the triangulated polygons, from which the analytic expressions of the N^kMHV amplitudes follow directly, both in twistor and in momentum space. We also discuss the ordinary and dual conformal properties and the cancellation of spurious singularities in twistor space.
We give an explicit formula for all tree amplitudes in N=4 SYM, derived by solving the recently presented supersymmetric tree-level recursion relations. The result is given in a compact, manifestly supersymmetric form and we show how to extract from it all possible component amplitudes for an arbitrary number of external particles and any arrangement of external particles and helicities. We focus particularly on extracting gluon amplitudes which are valid for any gauge theory. The formula for all tree-level amplitudes is given in terms of nested sums of dual superconformal invariants and it therefore manifestly respects both conventional and dual superconformal symmetry.
Very recently in arXiv:0705.0303 Alday and Maldacena gave a string theory prescription for computing (all) planar amplitudes in N=4 supersymmetric gauge theory at strong coupling using the AdS/CFT correspondence. These amplitudes are determined by a classical string solution and contain a universal exponential factor involving the action of the classical string. On the gauge theory side, expressions for perturbative amplitudes at strong coupling were previously proposed only for specific helicities of external particles -- the maximally helicity violating or MHV amplitudes. These follow from the exponential ansatz of Bern, Dixon and Smirnov for MHV amplitudes in N=4 SYM. In this paper we examine the amplitudes dependence on helicities and particle-types of external states. We consider the prefactor of string amplitudes and give arguments suggesting that the prefactor at strong coupling should be the same as the Yang-Mills tree-level amplitude for the same process. This implies that scattering amplitudes in N=4 SYM simplify dramatically in the strong coupling limit. It follows from our proposal that in this limit all (MHV and non-MHV) n-point amplitudes are given by the (known) tree-level Yang-Mills result times the helicity-independent (and particle-type-independent) universal exponential.
Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duality transformation for G_2 and F_4 SCIs is equivalent to a change of integration variables. Equality of SCIs for SP(2N) and SO(2N+1) group theories is proved in several important special cases. Reduction of SCIs to partition functions of 3d $mathcal{N}=2$ SYM theories with one matter field in the adjoint representation is investigated, corresponding 3d dual partners are found, and some new related hyperbolic beta integrals are conjectured.