Do you want to publish a course? Click here

Bubbles of Nothing in Flux Compactifications

112   0   0.0 ( 0 )
 Added by Benjamin Shlaer
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a simple AdS_4 x S^1 flux compactification stabilized by a complex scalar field winding the extra dimension and demonstrate an instability via nucleation of a bubble of nothing. This occurs when the Kaluza -- Klein dimension degenerates to a point, defining the bubble surface. Because the extra dimension is stabilized by a flux, the bubble surface must be charged, in this case under the axionic part of the complex scalar. This smooth geometry can be seen as a de Sitter topological defect with asymptotic behavior identical to the pure compactification. We discuss how a similar construction can be implemented in more general Freund -- Rubin compactifications.



rate research

Read More

We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such topologically unobstructed cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to $M_3 times S_1$ presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.
We construct instanton solutions describing the decay of flux compactifications of a $6d$ gauge theory by generalizing the Kaluza-Klein bubble of nothing. The surface of the bubble is described by a smooth magnetically charged solitonic brane whose asymptotic flux is precisely that responsible for stabilizing the 4d compactification. We describe several instances of bubble geometries for the various vacua occurring in a $6d$ Einstein-Maxwell theory namely, AdS_4 x S^2, R^{1,3} x S^2, and dS_4 x S^2. Unlike conventional solutions, the bubbles of nothing introduced here occur where a {em two}-sphere compactification manifold homogeneously degenerates.
Theories with compact extra dimensions are sometimes unstable to decay into a bubble of nothing -- an instability resulting in the destruction of spacetime. We investigate the existence of these bubbles in theories where the moduli fields that set the size of the extra dimensions are stabilized at a positive vacuum energy -- a necessary ingredient of any theory that aspires to describe the real world. Using bottom-up methods, and focusing on a five-dimensional toy model, we show that four-dimensional de Sitter vacua admit bubbles of nothing for a wide class of stabilizing potentials. We show that, unlike ordinary Coleman-De Luccia tunneling, the corresponding decay rate remains non-zero in the limit of vanishing vacuum energy. Potential implications include a lower bound on the size of compactified dimensions.
We identify instantons representing vacuum decay in a 6-dimensional toy model for string theory flux compactifications, with the two extra dimensions compactified on a sphere. We evaluate the instanton action for tunneling between different flux vacua, as well as for the decompactification decay channel. The bubbles resulting from flux tunneling have an unusual structure. They are bounded by two-dimensional branes, which are localized in the extra dimensions. This has important implications for bubble collisions.
We consider 4d string compactifications in the presence of fluxes, and classify particles, strings and domain walls arising from wrapped branes which have charges conserved modulo an integer p, and whose annihilation is catalized by fluxes, through the Freed-Witten anomaly or its du
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا