Do you want to publish a course? Click here

Demography of SDSS early-type galaxies from the perspective of radial color gradients

269   0   0.0 ( 0 )
 Added by Hyewon Suh
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00<z<0.06. The majority of massive early-type galaxies show a negative color gradient (red-cored) as generally expected for early-type galaxies. On the other hand, roughly 30 per cent of the galaxies in this sample show a positive color gradient (blue-cored). These blue-cored galaxies often show strong H beta absorption line strengths and/or emission line ratios that are indicative of the presence of young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all blue-cored galaxies show UV-optical colors that can only be explained by young stellar populations. This implies that most of the residual star formation in early-type galaxies is centrally concentrated. Blue-cored galaxies are predominantly low velocity dispersion systems. A simple model shows that the observed positive color gradients (blue-cored) are visible only for a billion years after a star formation episode for the typical strength of recent star formation. The observed effective radius decreases and the mean surface brightness increases due to this centrally-concentrated star formation episode. As a result, the majority of blue-cored galaxies may lie on different regions in the Fundamental Plane from red-cored ellipticals. However, the position of the blue-cored galaxies on the Fundamental Plane cannot be solely attributed to recent star formation but require substantially lower velocity dispersion. We conclude that a low-level of residual star formation persists at the centers of most of low-mass early-type galaxies, whereas massive ones are mostly quiescent systems with metallicity-driven red cores.



rate research

Read More

We make use of the images from the Sloan Digital Sky Survey Stripe 82 to present an analysis of r band surface brightness profiles and radial color gradients (g - r, u - r) in 111 nearby early-type galaxies (ETGs). With Stripe 82 images, we are able to pay special attentions to the low-surface-brightness areas (LSB areas) of the galaxies. The LSB areas make a difference to the Sersic fittings and concentration indices, making both the indices less than the typical values for ETGs. There are about 60% negative color gradients (red-core) within 1.5Re , much more than the approximately 10% positive ones (blue-core) within the same radius. However, taking into account of the LSB areas, we find that the color gradients are not necessarily monotonic: about one third of the red-core (or blue-core) galaxies have positive (or negative) color gradients in the outer areas. So LSB areas not only make ETGs Sersic profiles deviate from de Vaucouleur ones and shift to the disk end, but also reveal that quite a number of ETGs have opposite color gradients in inner and outer areas. These outcomes remind us the necessity of double-Sersic fitting. These LSB phenomena may be interpreted by mergers and thus different metallicity in the outer areas. Isophotal parameters are also discussed briefly in this paper: more disky nearby ETGs are spotted than boxy ones.
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from $-0.05pm0.11~log$ Gyr/R$_e$ for the lowest mass galaxies to $-0.82pm0.08~log$ Gyr/R$_e$ for the highest mass ones. This strong gradient-mass relation has a slope of $-0.70pm0.18$. Comparing local age and metallicity gradients with the velocity dispersion $sigma$ within galaxies against the global relation with $sigma$ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local $sigma$ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local $sigma$ reaching $6.50pm0.78$ dex/$log$ km/s for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity dependent supernova yields.
Using new long-slit spectroscopy obtained with X-Shooter at ESO-VLT, we study, for the first time, radial gradients of optical and Near-Infrared IMF-sensitive features in a representative sample of galaxies at the very high-mass end of the galaxy population. The sample consists of seven early-type galaxies (ETGs) at $zsim0.05$, with central velocity dispersion in the range $300<sigma<350$km/s. Using state-of-art stellar population synthesis models, we fit a number of spectral indices, from different chemical species (including TiOs and Na indices), to constrain the IMF slope (i.e. the fraction of low-mass stars), as a function of galactocentric distance, over a radial range out to $sim4$kpc. ETGs in our sample show a significant correlation of IMF slope and surface mass density. The bottom-heavy population (i.e. an excess of low-mass stars in the IMF) is confined to central galaxy regions with surface mass density above $sim 10^{10} M_odot kpc^{-2}$, or, alternatively, within a characteristic radius of $sim2$~kpc. Radial distance, in physical units, and surface mass density, are the best correlators to IMF variations, with respect to other dynamical (e.g. velocity dispersion) and stellar population (e.g. metallicity) properties. Our results for the most massive galaxies suggest that there is no single parameter} that fully explains variations in the stellar IMF, but IMF radial profiles at z$sim$0 rather result from the complex formation and mass accretion history of galaxy inner and outer regions.
We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient ($ abla$) and central value of the fits (evaluated at R$_e$/4) are compared against a set of six possible drivers of the trends. We find that velocity dispersion ($sigma$) - or, equivalently gravitational potential - is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of $ abla$[Mg/Fe] with increasing $sigma$ is contrasted by a rather shallow dependence of $ abla$[Z/H] with $sigma$ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes stringent constraints on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split between a field sample and a cluster sample. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]$_{e4}$) with $sigma$, along with a marginal trend of $ abla$[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as constraints on numerical models of the formation and evolution of ETGs.
354 - Marco Scodeggio 2001
The traditional use of fixed apertures in determining the well known color-magnitude (CM) relation of early type galaxies, coupled with the presence of radial color gradients within these systems, introduces a bias in the CM relation itself. The effect of this bias is studied here deriving a CM relation which is based on color measurements carried out homogeneously within an aperture of radius equal to that of the galaxy effective radius. A sample of 48 giant early-type galaxies in the Coma cluster, with CCD observations in the U- and V-band, is used for this derivation. It is found that internal radial color gradients in early-type galaxies cannot be neglected when discussing the colors of these systems, and that the CM relation derived using color measurements within the effective radius is significantly flatter than those based on fixed-aperture color measurements. With the presently available data it is impossible to determine whether the relation is completely flat, or whether a small correlation is still present between galaxy color and luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا