Do you want to publish a course? Click here

The SAMI Galaxy Survey: Stellar population radial gradients in early-type galaxies

281   0   0.0 ( 0 )
 Added by Ignacio Ferreras
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient ($ abla$) and central value of the fits (evaluated at R$_e$/4) are compared against a set of six possible drivers of the trends. We find that velocity dispersion ($sigma$) - or, equivalently gravitational potential - is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of $ abla$[Mg/Fe] with increasing $sigma$ is contrasted by a rather shallow dependence of $ abla$[Z/H] with $sigma$ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes stringent constraints on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split between a field sample and a cluster sample. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]$_{e4}$) with $sigma$, along with a marginal trend of $ abla$[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as constraints on numerical models of the formation and evolution of ETGs.



rate research

Read More

We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from $-0.05pm0.11~log$ Gyr/R$_e$ for the lowest mass galaxies to $-0.82pm0.08~log$ Gyr/R$_e$ for the highest mass ones. This strong gradient-mass relation has a slope of $-0.70pm0.18$. Comparing local age and metallicity gradients with the velocity dispersion $sigma$ within galaxies against the global relation with $sigma$ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local $sigma$ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local $sigma$ reaching $6.50pm0.78$ dex/$log$ km/s for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity dependent supernova yields.
Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is peculiar as X-ray halos of these galaxies are expected to destroy dust in 10 Myr (or less). This has sparked a debate regarding the origin of the dust: is it internally produced by asymptotic giant branch (AGB) stars, or is it accreted externally through mergers? We examine the 2D stellar and ionised gas kinematics of dusty ETGs using IFS observations from the SAMI galaxy survey, and integrated star-formation rates, stellar masses, and dust masses from the GAMA survey. Only 8% (4/49) of visually-classified ETGs are kinematically consistent with being dispersion-supported systems. These dispersion-dominated galaxies exhibit discrepancies between stellar and ionised gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star-formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining 90% of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of rotation-dominated galaxies. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low stellar mass when compared to dispersion-dominated galaxies. This means dust will be long lived and thus these galaxies do not require external scenarios for the origin of their dust content.
We explore stellar population properties separately in the bulge and the disk of double-component cluster galaxies to shed light on the formation of lenticular galaxies in dense environments. We study eight low-redshift clusters from the Sydney-AAO Multi-object Integral field (SAMI) Galaxy Survey, using 2D photometric bulge-disk decomposition in the $g$, $r$ and $i$-bands to characterize galaxies. For 192 double-component galaxies with $M_{*}>10^{10~}M_{odot}$ we estimate the color, age and metallicity of the bulge and the disk. The analysis of the $g-i$ colors reveals that bulges are redder than their surrounding disks with a median offset of 0.12$pm$0.02 mag, consistent with previous results. To measure mass-weighted age and metallicity we investigate three methods: (i) one based on galaxy stellar mass weights for the two components, (ii) one based on flux weights and (iii) one based on radial separation. The three methods agree in finding 62% of galaxies having bulges that are 2-3 times more metal-rich than the disks. Of the remaining galaxies, 7% have bulges that are more metal-poor than the disks, while for 31% the bulge and disk metallicities are not significantly different. We observe 23% of galaxies being characterized by bulges older and 34% by bulges younger with respect to the disks. The remaining 43% of galaxies have bulges and disks with statistically indistinguishable ages. Redder bulges tend to be more metal-rich than the disks, suggesting that the redder color in bulges is due to their enhanced metallicity relative to the disks instead of differences in stellar population age.
The well-established correlations between the mass of a galaxy and the properties of its stars are considered evidence for mass driving the evolution of the stellar population. However, for early-type galaxies (ETGs), we find that $g-i$ color and stellar metallicity [Z/H] correlate more strongly with gravitational potential $Phi$ than with mass $M$, whereas stellar population age correlates best with surface density $Sigma$. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the SAMI Galaxy Survey, compared to correlations with mass, the color--$Phi$, [Z/H]--$Phi$, and age--$Sigma$ relations show both smaller scatter and less residual trend with galaxy size. For the star formation duration proxy [$alpha$/Fe], we find comparable results for trends with $Phi$ and $Sigma$, with both being significantly stronger than the [$alpha$/Fe]-$M$ relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color--$Phi$ diagram is a more precise tool for determining the developmental stage of the stellar population than the conventional color--mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [$alpha$/Fe] relations with $Sigma$: (a) the age--$Sigma$ and [$alpha$/Fe]--$Sigma$ correlations arise as results of compactness driven quenching mechanisms; and/or (b) as fossil records of the $Sigma_{SFR}proptoSigma_{gas}$ relation in their disk-dominated progenitors.
Using new long-slit spectroscopy obtained with X-Shooter at ESO-VLT, we study, for the first time, radial gradients of optical and Near-Infrared IMF-sensitive features in a representative sample of galaxies at the very high-mass end of the galaxy population. The sample consists of seven early-type galaxies (ETGs) at $zsim0.05$, with central velocity dispersion in the range $300<sigma<350$km/s. Using state-of-art stellar population synthesis models, we fit a number of spectral indices, from different chemical species (including TiOs and Na indices), to constrain the IMF slope (i.e. the fraction of low-mass stars), as a function of galactocentric distance, over a radial range out to $sim4$kpc. ETGs in our sample show a significant correlation of IMF slope and surface mass density. The bottom-heavy population (i.e. an excess of low-mass stars in the IMF) is confined to central galaxy regions with surface mass density above $sim 10^{10} M_odot kpc^{-2}$, or, alternatively, within a characteristic radius of $sim2$~kpc. Radial distance, in physical units, and surface mass density, are the best correlators to IMF variations, with respect to other dynamical (e.g. velocity dispersion) and stellar population (e.g. metallicity) properties. Our results for the most massive galaxies suggest that there is no single parameter} that fully explains variations in the stellar IMF, but IMF radial profiles at z$sim$0 rather result from the complex formation and mass accretion history of galaxy inner and outer regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا