Do you want to publish a course? Click here

Abell 611: I. weak lensing analysis with LBC

215   0   0.0 ( 0 )
 Added by Anna Romano
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. The Large Binocular Cameras (LBC) are two twin wide field cameras (FOV ~ 23x 25) mounted at the prime foci of the 8.4m Large Binocular Telescope (LBT). We performed a weak lensing analysis of the z=0.288 cluster Abell 611 on g-band data obtained by the blue-optimized Large Binocular Camera in order to estimate the cluster mass. Methods. Due to the complexity of the PSF of LBC, we decided to use two different approaches, KSB and Shapelets, to measure the shape of background galaxies and to derive the shear signal produced by the cluster. Then we estimated the cluster mass with both aperture densitometry and parametric model fits. Results. The combination of the large aperture of the telescope and the wide field of view allowed us to map a region well beyond the expected virial radius of the cluster and to get a high surface density of background galaxies (23 galaxies/arcmin^2). This made possible to estimate an accurate mass for Abell 611. We find that the mass within 1.5 Mpc is: $(8pm3)times 10^{14} M_odot$ from the aperture mass technique and $(5pm1)times 10^{14} M_odot$ using the model fitting by a NFW mass density profile, for both Shapelets and KSB methods. This analysis demonstrates that LBC is a powerful instrument for weak gravitational lensing studies.



rate research

Read More

132 - A. B. Newman 2009
We present a detailed analysis of the baryonic and dark matter distribution in the lensing cluster Abell 611 (z=0.288), with the goal of determining the dark matter profile over an unprecedented range of cluster-centric distance. By combining three complementary probes of the mass distribution, weak lensing from deep multi-color imaging, strong lensing constraints based on the identification of multiply-imaged sources, and resolved stellar velocity dispersion measures for the brightest cluster galaxy (BCG), we extend the methodology for separating the dark and baryonic mass components introduced by Sand et al. (2008). Our resulting dark matter profile samples the cluster from ~3 kpc to 3.25 Mpc, thereby providing an excellent basis for comparisons with recent numerical models. We demonstrate that only by combining our three observational techniques can degeneracies in constraining the form of the dark matter profile be broken on scales crucial for detailed comparisons with numerical simulations. Our analysis reveals that a simple Navarro, Frenk, and White (NFW) profile is an unacceptable fit to our data. We confirm earlier claims that the inner profile of the dark matter profile deviates significantly from the NFW form and find a inner logarithmic slope beta flatter than 0.3 (68%; where rho_DM ~ r^{-beta} at small radii). In order to reconcile our data with cluster formation in a LambdaCDM cosmology, we speculate that it may be necessary to revise our understanding of the nature of baryon--dark matter interactions in cluster cores. Comprehensive weak and strong lensing data, when coupled with kinematic information on the brightest cluster galaxy, can readily be applied to a larger sample of clusters to test the universality of these results.
We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomplete coverage and pixel-level masking due to foreground sources. We develop a method to use two dimensional KL eigenmodes of shear to interpolate noisy shear measurements across masked regions. We explore the results of this method with simulated shear catalogs, using statistics of high-convergence regions in the resulting map. We find that the KL procedure not only minimizes the bias due to masked regions in the field, it also reduces spurious peak counts from shape noise by a factor of ~ 3 in the cosmologically sensitive regime. This indicates that KL reconstructions of masked shear are not only useful for creating robust convergence maps from masked shear catalogs, but also offer promise of improved parameter constraints within studies of shear peak statistics.
We present a new gravitational lens model of the Hubble Frontier Fields cluster Abell 370 ($z = 0.375$) using imaging and spectroscopy from Hubble Space Telescope and ground-based spectroscopy. We combine constraints from a catalog of 1344 weakly lensed galaxies and 39 multiply-imaged sources comprised of 114 multiple images, including a system of multiply-imaged candidates at $z=7.93 pm 0.02$, to obtain a best-fit mass distribution using the cluster lens modeling code Strong and Weak Lensing United. As the only analysis of A370 using strong and weak lensing constraints from Hubble Frontier Fields data, our method provides an independent check on assumptions in other methods on the mass distribution. Convergence, shear, and magnification maps are made publicly available through the HFF website. We find that the model we produce is similar to models produced by other groups, with some exceptions due to the differences in lensing code methodology. In an effort to study how our total projected mass distribution traces light, we measure the stellar mass density distribution using Spitzer/Infrared Array Camera imaging. Comparing our total mass density to our stellar mass density in a radius of 0.3 Mpc, we find a mean projected stellar to total mass ratio of $langle f* rangle = 0.011 pm 0.003$ (stat.) using the diet Salpeter initial mass function. This value is in general agreement with independent measurements of $langle f* rangle$ in clusters of similar total mass and redshift.
We present a weak lensing analysis of the cluster of galaxies RXC J2248.7-4431, a massive system at z=0.3475 with prominent strong lensing features covered by the HST/CLASH survey (Postman et al. 2012). Based on UBVRIZ imaging from the WFI camera at the MPG/ESO-2.2m telescope, we measure photometric redshifts and shapes of background galaxies. The cluster is detected as a mass peak at 5sigma significance. Its density can be parametrised as an NFW profile (Navarro et al. 1996) with two free parameters, the mass M_200m=(33.1+9.6-6.8)x10^14Msol and concentration c_200m=2.6+1.5-1.0. We discover a second cluster inside the field of view at a photometric redshift of z~0.6, with an NFW mass of M_200m=(4.0+3.7-2.6)x10^14Msol.
Abell 2029 is one of the most studied clusters due to its proximity (z=0.07), its strong X-ray brightness and its giant cD galaxy which is one of the biggest stellar aggregates we know. We present here the first weak lensing mass reconstruction of this cluster made from a deep I-band image of 28.5x28.5 centered on the cluster cD galaxy. This preliminary result allows us already to show the shape similarities between the cD galaxy and the cluster itself, suggesting that they form actually a single structure. We find a lower estimate of the total mass of 1.8 10^14 h^-1 solar masses within a radius of 0.3 h^-1 Mpc. We finally compute the mass-to-cD-light ratio and its evolution as a function of scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا