Do you want to publish a course? Click here

Dispersion Relation for the Nucleon Electromagnetic Form Factors

109   0   0.0 ( 0 )
 Added by Ishikawa Hirohisa
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Elastic electromagnetic form factors of nucleons are investigated both for the time-like and the space-like momentums by using the unsubtracted dispersion relation with QCD constraints. It is shown that the calculated form factors reproduce the experimental data reasonably well; they agree with recent experimental data for the neutron magnetic form factors for the space-like data obtained by the CLAS collaboration and are compatible with the ratio of the electric and magnetic form factors for the time-like momentum obtained by the BABAR collaboration.



rate research

Read More

The nucleon electromagnetic form factors are calculated in light cone QCD sum rules framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DAs), predictions for the form factors are presented and compared with existing experimental data. It is shown that our results describe remarkably well the existing experimental data.
112 - C. Alexandrou 2019
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the understanding of the sea quark dynamics. We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of Quantum Chromodynamics using simulations that include light, strange and charm quarks in the sea all tuned to their physical mass values. We employ state-of-the-art techniques to accurately extract the form factors for values of the momentum transfer square up to 0.8~GeV$^2$. We find that both the electric and magnetic form factors are statistically non-zero. We obtain for the strange magnetic moment $mu^s=-0.017(4)$, the strange magnetic radius $langle r^2_M rangle^s=-0.015(9)$~fm$^2$, and the strange charge radius $langle r^2_E rangle^s=-0.0048(6)$~fm$^2$.
The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.
We study the electromagnetic nucleon form factors within the approach based on light-cone sum rules. We include the next-to-leading-order corrections for the contributions of twist-three and twist-four operators and a consistent treatment of the nucleon mass corrections in our calculation. It turns out that a self-consistent picture arises when the three valence quarks carry $40%:30%:30%$ of the proton momentum.
We study the electromagnetic structure of the nucleon within a hybrid constituent-quark model that comprises, in addition to the $3q$ valence component, also a $3q$+$pi$ non-valence component. To this aim we employ a Poincare-invariant multichannel formulation based on the point-form of relativistic quantum mechanics. With a simple 3-quark wave function for the bare nucleon, i.e. the $3q$-component, we obtain reasonable results for the nucleon form factors and predict the meson-cloud contribution to be significant only below $Q^2lesssim 0.5$,GeV$^2$ amounting to about 10% for $Q^2rightarrow 0$, in accordance with the findings of other authors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا