Do you want to publish a course? Click here

Strangeness production in hadronic models and recombination models

89   0   0.0 ( 0 )
 Added by Marcus Bleicher
 Publication date 2010
  fields
and research's language is English
 Authors Gunnar Graf




Ask ChatGPT about the research

We present recent results on the production, spectra and elliptic flow of strange particles in dynamic simulations employing hadronic degrees of freedom and from recombination models. The main focus will be on the Ultra-relativistic Molecular Dynamics (UrQMD) Boltzmann approach to relativistic heavy ion collisions and a hybrid approach with intermediate hydrodynamic evolution based on UrQMD (available for download as UrQMD v3.3). Compared to the standard binary collision approach, an enhancement of the strange particle particle yields is found in the hybrid approach due to the assumption of local equilibration. The production origins of the Phi-meson in the hybrid approach are studied in further detail. We also present results on the transverse momentum spectra of baryon to meson ratios of strange particles. Due to the approximate energy independent scaling of this ratio as a function of p_T we argue, that a maximum in these spectra may not be a unique sign for quark coalescence but can be understood in terms of flow and fragmentation.



rate research

Read More

We explore the effects of strangeness and $Delta$ resonance in baryonic matter and compact stars within the relativistic-mean-field (RMF) models. The covariant density functional PKDD is adopted for $N$-$N$ interaction, parameters fixed based on finite hypernuclei and neutron stars are taken for the hyperon-meson couplings, and the universal baryon-meson coupling scheme is adopted for the $Delta$-meson couplings. In light of the recent observations of GW170817 with the dimensionless combined tidal deformability $197 leq bar{Lambda}leq 720$, we find it is essential to include the $Delta$ resonances in compact stars, and small $Delta$-$rho$ coupling $g_{rho Delta}$ is favored if the mass $2.27{}_{-0.15}^{+0.17} M_odot$ of PSR J2215+5135 is confirmed.
The results of the microscopic transport calculations of $bar p$-nucleus interactions within a GiBUU model are presented. The dominating mechanism of hyperon production is the strangeness exchange processes $bar K N to Y pi$ and $bar K N to Xi K$. The calculated rapidity spectra of $Xi$ hyperons are significantly shifted to forward rapidities with respect to the spectra of $S=-1$ hyperons. We argue that this shift should be a sensitive test for the possible exotic mechanisms of $bar p$-nucleus annihilation. The production of the double $Lambda$-hypernuclei by $Xi^-$ interaction with a secondary target is calculated.
72 - Sven Soff 2003
We review recent developments in the field of microscopic transport model calculations for ultrarelativistic heavy ion collisions. In particular, we focus on the strangeness production, for example, the phi-meson and its role as a messenger of the early phase of the system evolution. Moreover, we discuss the important effects of the (soft) field properties on the multiparticle system. We outline some current problems of the models as well as possible solutions to them.
Recent extensive data from the beam energy scan of the STAR collaboration at BNL-RHIC provide the basis for a detailed update for the universal behavior of the strangeness suppression factor gamma_s as function of the initial entropy density, as proposed in our recent paper [1]. [1] P. Castorina, S. Plumari and H. Satz, Int. J. Mod. Phys. E26 (2017) 1750081 (arXiv:1709.02706)
192 - S. S. Avancini 2008
In the present paper we investigate the onset of the pasta phase with different parametrisations of the density dependent hadronic model and compare the results with one of the usual parametrisation of the non-linear Walecka model. The influence of the scalar-isovector virtual delta meson is shown. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in beta-equilibrium are studied. We compare our results with restrictions imposed on the the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا