Do you want to publish a course? Click here

Statistical Mechanical Analysis of Compressed Sensing Utilizing Correlated Compression Matrix

131   0   0.0 ( 0 )
 Added by Koujin Takeda
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

We investigate a reconstruction limit of compressed sensing for a reconstruction scheme based on the L1-norm minimization utilizing a correlated compression matrix with a statistical mechanics method. We focus on the compression matrix modeled as the Kronecker-type random matrix studied in research on multi-input multi-output wireless communication systems. We found that strong one-dimensional correlations between expansion bases of original information slightly degrade reconstruction performance.



rate research

Read More

We provide a scheme for exploring the reconstruction limit of compressed sensing by minimizing the general cost function under the random measurement constraints for generic correlated signal sources. Our scheme is based on the statistical mechanical replica method for dealing with random systems. As a simple but non-trivial example, we apply the scheme to a sparse autoregressive model, where the first differences in the input signals of the correlated time series are sparse, and evaluate the critical compression rate for a perfect reconstruction. The results are in good agreement with a numerical experiment for a signal reconstruction.
194 - Yipeng Liu 2013
Compressed sensing (CS) shows that a signal having a sparse or compressible representation can be recovered from a small set of linear measurements. In classical CS theory, the sampling matrix and representation matrix are assumed to be known exactly in advance. However, uncertainties exist due to sampling distortion, finite grids of the parameter space of dictionary, etc. In this paper, we take a generalized sparse signal model, which simultaneously considers the sampling and representation matrix uncertainties. Based on the new signal model, a new optimization model for robust sparse signal reconstruction is proposed. This optimization model can be deduced with stochastic robust approximation analysis. Both convex relaxation and greedy algorithms are used to solve the optimization problem. For the convex relaxation method, a sufficient condition for recovery by convex relaxation is given; For the greedy algorithm, it is realized by the introduction of a pre-processing of the sensing matrix and the measurements. In numerical experiments, both simulated data and real-life ECG data based results show that the proposed method has a better performance than the current methods.
Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements in a highly efficient manner. Originally devised for the recovery of sparse signals, it has become clear that a similar methodology would also carry over to a wealth of other classes of structured signals. In this work, we provide an overview over the theory of compressed sensing for a particularly rich family of such signals, namely those of hierarchically structured signals. Examples of such signals are constituted by blocked vectors, with only few non-vanishing sparse blocks. We present recovery algorithms based on efficient hierarchical hard-thresholding. The algorithms are guaranteed to stable and robustly converge to the correct solution provide the measurement map acts isometrically restricted to the signal class. We then provide a series of results establishing that the required condition for large classes of measurement ensembles. Building upon this machinery, we sketch practical applications of this framework in machine-type and quantum communication.
In this work, we consider compressed sensing reconstruction from $M$ measurements of $K$-sparse structured signals which do not possess a writable correlation model. Assuming that a generative statistical model, such as a Boltzmann machine, can be trained in an unsupervised manner on example signals, we demonstrate how this signal model can be used within a Bayesian framework of signal reconstruction. By deriving a message-passing inference for general distribution restricted Boltzmann machines, we are able to integrate these inferred signal models into approximate message passing for compressed sensing reconstruction. Finally, we show for the MNIST dataset that this approach can be very effective, even for $M < K$.
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals structures to recover them from few linear observations. Despite the steady progress in the field of compressed sensing, structures that are often used for signal recovery are still much simpler than those employed by state-of-the-art compression codes. The main goal of this paper is to bridge this gap through answering the following question: Can one employ a given compression code to build an efficient (polynomial time) compressed sensing recovery algorithm? In response to this question, the compression-based gradient descent (C-GD) algorithm is proposed. C-GD, which is a low-complexity iterative algorithm, is able to employ a generic compression code for compressed sensing and therefore elevates the scope of structures used in compressed sensing to those used by compression codes. The convergence performance of C-GD and its required number of measurements in terms of the rate-distortion performance of the compression code are theoretically analyzed. It is also shown that C-GD is robust to additive white Gaussian noise. Finally, the presented simulation results show that combining C-GD with commercial image compression codes such as JPEG2000 yields state-of-the-art performance in imaging applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا