Do you want to publish a course? Click here

Hierarchical compressed sensing

84   0   0.0 ( 0 )
 Added by Ingo Roth
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements in a highly efficient manner. Originally devised for the recovery of sparse signals, it has become clear that a similar methodology would also carry over to a wealth of other classes of structured signals. In this work, we provide an overview over the theory of compressed sensing for a particularly rich family of such signals, namely those of hierarchically structured signals. Examples of such signals are constituted by blocked vectors, with only few non-vanishing sparse blocks. We present recovery algorithms based on efficient hierarchical hard-thresholding. The algorithms are guaranteed to stable and robustly converge to the correct solution provide the measurement map acts isometrically restricted to the signal class. We then provide a series of results establishing that the required condition for large classes of measurement ensembles. Building upon this machinery, we sketch practical applications of this framework in machine-type and quantum communication.



rate research

Read More

This paper analyzes the impact of non-Gaussian multipath component (MPC) amplitude distributions on the performance of Compressed Sensing (CS) channel estimators for OFDM systems. The number of dominant MPCs that any CS algorithm needs to estimate in order to accurately represent the channel is characterized. This number relates to a Compressibility Index (CI) of the channel that depends on the fourth moment of the MPC amplitude distribution. A connection between the Mean Squared Error (MSE) of any CS estimation algorithm and the MPC amplitude distribution fourth moment is revealed that shows a smaller number of MPCs is needed to well-estimate channels when these components have large fourth moment amplitude gains. The analytical results are validated via simulations for channels with lognormal MPCs such as the NYU mmWave channel model. These simulations show that when the MPC amplitude distribution has a high fourth moment, the well known CS algorithm of Orthogonal Matching Pursuit performs almost identically to the Basis Pursuit De-Noising algorithm with a much lower computational cost.
Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix $A$ and a recovery algorithm, such that the sparse binary vector $mathbf{x}$ can be recovered reliably from the measurements $mathbf{y}=Amathbf{x}+sigmamathbf{z}$, where $mathbf{z}$ is additive white Gaussian noise. We propose to design $A$ as a parity check matrix of a low-density parity-check code (LDPC), and to recover $mathbf{x}$ from the measurements $mathbf{y}$ using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of $A$. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.
Xampling generalizes compressed sensing (CS) to reduced-rate sampling of analog signals. A unified framework is introduced for low rate sampling and processing of signals lying in a union of subspaces. Xampling consists of two main blocks: Analog compression that narrows down the input bandwidth prior to sampling with commercial devices followed by a nonlinear algorithm that detects the input subspace prior to conventional signal processing. A variety of analog CS applications are reviewed within the unified Xampling framework including a general filter-bank scheme for sparse shift-invariant spaces, periodic nonuniform sampling and modulated wideband conversion for multiband communications with unknown carrier frequencies, acquisition techniques for finite rate of innovation signals with applications to medical and radar imaging, and random demodulation of sparse harmonic tones. A hardware-oriented viewpoint is advocated throughout, addressing practical constraints and exemplifying hardware realizations where relevant. It will appear as a chapter in a book on Compressed Sensing: Theory and Applications edited by Yonina Eldar and Gitta Kutyniok.
207 - Yipeng Liu 2013
Compressed sensing (CS) shows that a signal having a sparse or compressible representation can be recovered from a small set of linear measurements. In classical CS theory, the sampling matrix and representation matrix are assumed to be known exactly in advance. However, uncertainties exist due to sampling distortion, finite grids of the parameter space of dictionary, etc. In this paper, we take a generalized sparse signal model, which simultaneously considers the sampling and representation matrix uncertainties. Based on the new signal model, a new optimization model for robust sparse signal reconstruction is proposed. This optimization model can be deduced with stochastic robust approximation analysis. Both convex relaxation and greedy algorithms are used to solve the optimization problem. For the convex relaxation method, a sufficient condition for recovery by convex relaxation is given; For the greedy algorithm, it is realized by the introduction of a pre-processing of the sensing matrix and the measurements. In numerical experiments, both simulated data and real-life ECG data based results show that the proposed method has a better performance than the current methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا