Do you want to publish a course? Click here

The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

133   0   0.0 ( 0 )
 Added by Hubert Lampeitl
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We rediscover, to high significance, the strong correlation between host galaxy typeand the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ias favor star-forming galaxies. We also find evidence (at between 2 to 3 sigma) that SNe Ia are ~0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R_V ~1, while SNe Ia in star-forming hosts require R_V ~2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4 sigma) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.



rate research

Read More

We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05<z<0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat LambdaCDM cosmological model, we find that our photometric sample alone gives omega_m=0.24+0.07-0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on omega_m and omega_lambda, comparable to those derived from the spectroscopically-confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w=-0.96+0.10-0.10, omega_m=0.29+0.02-0.02 and omega_k=0.00+0.03-0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is re-assuring, considering the lower redshift leverage of the SDSS-II SN sample (z<0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically-classified SNe Ia samples in improving cosmological constraints.
We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory (SNfactory). Combining GALEX UV data with optical and near infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star-formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high precision redshifts, gas-phase metallicities, and Halpha-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from SDSS for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The star-formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.
281 - Mathew Smith 2011
Using data from the Sloan Digital Sky Supernova Survey-II, we measure the rate of Type Ia Supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05<z<0.25 is constructed. Using broad-band photometry we use the PEGASE spectral energy distributions (SEDs) to estimate host galaxy stellar masses and recent star-formation rates. We find that the rate of SNe Ia per unit stellar mass is significantly higher (by a factor of ~30) in highly star-forming galaxies compared to passive galaxies. When parameterizing the SN Ia rate (SNR_Ia) based on host galaxy properties, we find that the rate of SNe Ia in passive galaxies is not linearly proportional to the stellar mass, instead a SNR_Ia proportional to M^0.68 is favored. However, such a parameterization does not describe the observed SN Ia rate in star-forming galaxies. The SN Ia rate in star-forming galaxies is well fit by SNR_Ia = 1.05pm0.16x10^{-10} M ^{0.68pm0.01} + 1.01pm0.09x10^{-3} SFR^{1.00pm0.05} (statistical errors only), where M is the host galaxy mass and SFR is the star-formation rate. These results are insensitive to the selection criteria used, redshift limit considered and the inclusion of non-spectroscopically confirmed SNe Ia. We also show there is a dependence between the distribution of the MLCS light-curve decline rate parameter, Delta, and host galaxy type. Passive galaxies host less luminous SNe Ia than seen in moderately and highly star-forming galaxies, although a population of luminous SNe is observed in passive galaxies, contradicting previous assertions that these SNe Ia are only observed in younger stellar systems. The MLCS extinction parameter, A_V, is similar in passive and moderately star-forming galaxies, but we find indications that it is smaller, on average, in highly star-forming galaxies. We confirm these results using the SALT2 light-curve fitter.
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopically-confirmed SNeIa discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6{sigma} significance of a non-zero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.
ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) mathrm{SNu}r h^{2}$ ($mathrm{SNu}x = 10^{-12} L_{xsun}^{-1} mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_{-0.30-0.01}) mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is ${1.94}^{+1.31+0.043}_{-0.91-0.015}$ and ${3.02}^{+1.31+0.062}_{-1.03-0.048}$, for C4 and maxBCG clusters. The SN rate in galaxy clusters as a function of redshift...shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find $r_{L} = $ $[(0.49^{+0.15}_{-0.14}) +$ $(0.91^{+0.85}_{-0.81}) times z]$ $mathrm{SNu}B$ $h^{2}$. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies... we estimate the fraction of cluster SNe that are hostless to be $(9.4^+8._3-5.1)%$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا