Do you want to publish a course? Click here

Chiral charge-density-waves

534   0   0.0 ( 0 )
 Added by Junya Ishioka
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discovered the chirality of charge density waves (CDW) in 1T-TiSe$_2$ by using scanning tunnelling microscopy (STM) and optical ellipsometry. We found that the CDW intensity becomes $I{a_1}:I{a_2}:I{a_3} = 1:0.7 pm 0.1:0.5 pm 0.1$, where $Ia_i$ (i =1, 2, 3) is the amplitude of the tunnelling current contributed by the CDWs. There were two states, in which the three intensity peaks of the CDW decrease textit{clockwise} and textit{anticlockwise} when we index each nesting vector in order of intensity in the Fourier transformation of the STM images. The chirality in CDW results in the three-fold symmetry breaking. Macroscopically, two-fold symmetry was indeed observed in optical measurement. We propose the new generalized CDW chirality $H_{CDW} equiv {boldmath $q_1$} cdot ({boldmath $q_2$}times {boldmath $q_3$})$, where ${boldmath $q_i$}$ are the nesting vectors, which is independent of the symmetry of components. The nonzero $H_{CDW}$ - the triple-${boldmath $q$}$ vectors do not exist in an identical plane in the reciprocal space - should induce a real-space chirality in CDW system.



rate research

Read More

128 - J. J. Gao , W. H. Zhang , J. G. Si 2021
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasing of the doping concentration (x), an unexpected chiral CDW phase is observed in the sample with x = 0.08, in which Ti atoms almost fully occupy the central Ta atoms in the CDW clusters. The emergence of the chiral CDW is proposed to be from the doping-enhanced orbital order. Only when x = 0.08, the possible long-range orbital order can trigger the chiral CDW phase. Compared with other 3d-elements doped 1T-TaS2, the Ti-doping retains the electronic flat band and the corresponding CDW phase, which is a prerequisite for the emergence of chirality. We expect that introducing elements with a strong orbital character may induce a chiral charge order in a broad class of CDW systems. The present results open up another avenue for further exploring the chiral CDW materials.
Recent experiments show oscillations of dominant period h/2e in conductance vs. magnetic flux of charge density wave (CDW) rings above 77 K, revealing macroscopically observable quantum behavior. The time-correlated soliton tunneling model discussed here is based on coherent, Josephson-like tunneling of microscopic quantum solitons of charge 2e. The model interprets the CDW threshold electric field as a Coulomb blockade threshold for soliton pair creation, often much smaller than the classical depinning field but with the same impurity dependence (e.g., ~ ni^2 for for weak pinning). This picture draws upon the theory of time-correlated single-electron tunneling to interpret CDW dynamics above threshold. Similar to Feynmans derivation of the Josephson current-phase relation for a superconducting tunnel junction, the picture treats the Schru007fodinger equation as an emergent classical equation to describe the time-evolution of Josephson-coupled order parameters related to soliton dislocation droplets. Vector or time-varying scalar potentials can affect the order parameter phases to enable magnetic quantum interference in CDW rings or lead to interesting behavior in response to oscillatory electric fields. The ability to vary both magnitudes and phases is an aspect important to future applications in quantum computing.
We analyze the instability of an unpolarized uniform quantum plasma consisting of two oppositely charged fermionic components with varying mass ratios, against charge and spin density waves (CDWs and SDWs). Using density functional theory, we treat each component with the local spin density approximation and a rescaled exchange-correlation functional. Interactions between different components are treated with a mean-field approximation. In both two- and three-dimensions, we find leading unstable CDW modes in the second-order expansion of the energy functional, which would induce the transition to quantum liquid crystals. The transition point and the length of the wave-vector are computed numerically. Discontinuous ranges of the wave-vector are found for different mass ratios between the two components, indicating exotic quantum phase transitions. Phase diagrams are obtained and a scaling relation is proposed to generalize the results to two-component fermionic plasmas with any mass scale. We discuss the implications of our results and directions for further improvement in treating quantum plasmas.
200 - Jose Riera 2000
Charge, spin, as well as lattice instabilities are investigated in isolated or weakly coupled chains of correlated electrons at quarter-filling. Our analysis is based on extended Hubbard models including nearest neighbor repulsion and Peierls coupling to lattice degrees of freedom. While treating the electronic quantum fluctuations exactly, the lattice structure is optimized self-consistently. We show that, generically, isolated chains undergo instabilities towards coexisting charge density waves (CDW) and bond order waves (BOW) insulating spin-gapped phases. The spin and charge gaps of the BOW-CDW phase are computed. In the presence of an interchain magnetic coupling spin density waves phases including a CDW or a BOW component are also found. Our results are discussed in the context of insulating charge transfer salts.
An interaction between electrons and lattice vibrations (phonons) results in two fundamental quantum phenomena in solids: in three dimensions it can turn a metal into a superconductor whereas in one dimension it can turn a metal into an insulator. In two dimensions (2D) both superconductivity and charge-density waves (CDW) are believed to be anomalous. In superconducting cuprates, critical transition temperatures are unusually high and the energy gap may stay unclosed even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the resistivity below the transition can decrease with temperature even faster than in the normal phase and a basic prerequisite for the CDW, the favourable nesting conditions (when some sections of the Fermi surface appear shifted by the same vector), seems to be absent. Notwithstanding the existence of alternatives to conventional theories, both phenomena in 2D still remain the most fascinating puzzles in condensed matter physics. Using the latest developments in high-resolution angle-resolved photoemission spectroscopy (ARPES) here we show that the normal-state pseudogap also exists in one of the most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is driven by a conventional nesting instability, which is masked by the pseudogap. Our findings reconcile and explain a number of unusual, as previously believed, experimental responses as well as disprove many alternative theoretical approaches. The magnitude, character and anisotropy of the 2D-CDW pseudogap are intriguingly similar to those seen in superconducting cuprates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا