Do you want to publish a course? Click here

Coherent quantum transport of charge density waves

126   0   0.0 ( 0 )
 Added by John H. Miller Jr.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments show oscillations of dominant period h/2e in conductance vs. magnetic flux of charge density wave (CDW) rings above 77 K, revealing macroscopically observable quantum behavior. The time-correlated soliton tunneling model discussed here is based on coherent, Josephson-like tunneling of microscopic quantum solitons of charge 2e. The model interprets the CDW threshold electric field as a Coulomb blockade threshold for soliton pair creation, often much smaller than the classical depinning field but with the same impurity dependence (e.g., ~ ni^2 for for weak pinning). This picture draws upon the theory of time-correlated single-electron tunneling to interpret CDW dynamics above threshold. Similar to Feynmans derivation of the Josephson current-phase relation for a superconducting tunnel junction, the picture treats the Schru007fodinger equation as an emergent classical equation to describe the time-evolution of Josephson-coupled order parameters related to soliton dislocation droplets. Vector or time-varying scalar potentials can affect the order parameter phases to enable magnetic quantum interference in CDW rings or lead to interesting behavior in response to oscillatory electric fields. The ability to vary both magnitudes and phases is an aspect important to future applications in quantum computing.



rate research

Read More

We analyze the instability of an unpolarized uniform quantum plasma consisting of two oppositely charged fermionic components with varying mass ratios, against charge and spin density waves (CDWs and SDWs). Using density functional theory, we treat each component with the local spin density approximation and a rescaled exchange-correlation functional. Interactions between different components are treated with a mean-field approximation. In both two- and three-dimensions, we find leading unstable CDW modes in the second-order expansion of the energy functional, which would induce the transition to quantum liquid crystals. The transition point and the length of the wave-vector are computed numerically. Discontinuous ranges of the wave-vector are found for different mass ratios between the two components, indicating exotic quantum phase transitions. Phase diagrams are obtained and a scaling relation is proposed to generalize the results to two-component fermionic plasmas with any mass scale. We discuss the implications of our results and directions for further improvement in treating quantum plasmas.
In recent experiments, external anisotropy has been a useful tool to tune different phases and study their competitions. In this paper, we look at the quantum Hall charge density wave states in the $N=2$ Landau level. Without anisotropy, there are two first-order phase transitions between the Wigner crystal, the $2$-electron bubble phase, and the stripe phase. By adding mass anisotropy, our analytical and numerical studies show that the $2$-electron bubble phase disappears and the stripe phase significantly enlarges its domain in the phase diagram. Meanwhile, a regime of stripe crystals that may be observed experimentally is unveiled after the bubble phase gets out. Upon increase of the anisotropy, the energy of the phases at the transitions becomes progressively smooth as a function of the filling. We conclude that all first-order phase transitions are replaced by continuous phase transitions, providing a possible realisation of continuous quantum crystalline phase transitions.
144 - Clive Emary , John Gough 2014
We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As concrete example we consider the use of feedback to optimise the conductance of a chaotic quantum dot and investigate effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.
We report transport measurements under very high current densities $j$, up to $sim10^8$~A/cm$^2$, of quasi-one-dimensional charge-density wave (CDW) conductors NbSe$_3$ and TaS$_3$. Joule heating has been minimized by using a point-contact configuration or by measuring samples with extremely small cross-sections. Above $j_c approx 10^7$~A/cm$^2$ we find evidence for suppression of the Peierls gap and development of the metallic state. The critical CDW velocity corresponding with $j_0$ is comparable with the sound velocity, and with $Delta/ hbar k_F$ ($k_F$ is the Fermi wave vector), which corresponds to the depairing current. Possible scenarios of the Peierls state destruction are discussed.
124 - C. Barone , A. Galdi , N. Lampis 2009
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin films in the temperature range from room temperature to 160 K are reported. It is shown that both the broadband 1/f noise properties and the dependence of resistance on electric field are consistent with the idea of a collective electrical transport, as in the classical model of sliding charge density waves. On the other hand, the observations cannot be reconciled with standard models of charge ordering and charge melting. Methodologically, it is proposed to consider noise-spectra analysis as a unique tool for the identification of the transport mechanism in such highly correlated systems. On the basis of the results, the electrical transport is envisaged as one of the most effective ways to understand the nature of the insulating, charge-modulated ground states in manganites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا