No Arabic abstract
We evaluate, exactly in d, the master integrals contributing to massless three-loop QCD form factors. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm. Using our results for the master integrals we obtain analytical expressions for two missing constants in the ep-expansion of the two most complicated master integrals and present the form factors in a completely analytic form.
We evaluate analytically higher terms of the epsilon-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g-2 in QED up to the transcendentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm.
We present the color planar and complete light quark QCD contributions to the three loop heavy quark form factors in the case of vector, axial-vector, scalar and pseudo-scalar currents. We evaluate the master integrals applying a new method based on differential equations for general bases, which is applicable for any first order factorizing systems. The analytic results are expressed in terms of harmonic polylogarithms and real-valued cyclotomic harmonic polylogarithms.
A summary of the calculation of the color-planar and complete light quark contributions to the massive three-loop form factors is presented. Here a novel calculation method for the Feynman integrals is used, solving general uni-variate first order factorizable systems of differential equations. We also present predictions for the asymptotic structure of these form factors.
We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors $F_1$ and $F_2$ involving a closed loop of massless fermions. This subset is gauge invariant and contains both planar and non-planar contributions. We perform the reduction using FIRE and compute the master integrals with the help of differential equations. Our analytic results can be expressed in terms of Goncharov polylogarithms. We provide analytic results for all master integrals which are not present in the large-$N_c$ calculation considered in Refs. [1,2].
We compute the three-loop corrections to the quark axial vector form factor in massless QCD, focusing on the pure-singlet contributions where the axial vector current couples to a closed quark loop. Employing the Larin prescription for $gamma_5$, we discuss the UV renormalization of the form factor. The infrared singularity structure of the resulting singlet axial-vector form factor is explained from infrared factorization, defining a finite remainder function.