No Arabic abstract
We compare the apparent axial ratio distributions of Brightest Cluster Galaxies (BCGs) and normal ellipticals (Es) in our sample of 75 galaxy clusters from the WINGS survey. Most BCGs in our clusters (69%) are classified as cD galaxies. The sample of cDs has been completed by 14 additional cDs (non-BCGs) we found in our clusters. We find that: (i) Es have triaxial shape, the triaxiality sharing almost evenly the intrinsic axial ratios parameter space, with a weak preference for prolateness; (ii) the BCGs have triaxial shape as well. However, their tendence towards prolateness is much stronger than in the case of Es. Such a strong prolateness appears entirely due to the sizeable (dominant) component of cDs inside the WINGS sample of BCGs. In fact, while the normal(non-cD) BCGs do not differ from Es, as far as the shape distribution is concerned, the axial ratio distribution of BCG_cD galaxies is found to support quite prolate shapes; (iii) our result turns out to be strongly at variance with the only similar, previous analysis by Ryden et al.(1993)(RLP93), where BCGs and Es were found to share the same axial ratio distribution; (iv) our data suggest that the above discrepancy is mainly caused by the different criteria that RLP93 and ourselves use to select the cluster samples, coupled with a preference of cDs to reside in powerful X-ray emitting clusters; (v) the GIF2 N-body results suggest that the prolateness of the BCGs (in particular the cDs) could reflect the shape of the associated dark matter halos.
We present a new deep optical study of a luminosity limited sample of nearby elliptical galaxies, attempting to observe the effects of gravitational interactions on the ISM of these objects. This study is motivated by recent observations of M86, a nearby elliptical galaxy that shows possible evidence for gas heating through a recent gravitational interaction. The complete sample includes luminous ellipticals in clusters, groups and the field. For each of the galaxies we objectively derive a tidal parameter which measures the deviation of the stellar body from a smooth, relaxed model and find that 73% of them show tidal disturbance signatures in their stellar bodies. This is the first time that such an analysis is done on a statistically complete sample and it confirms that elliptical galaxies continue to grow and evolve through gravitational interactions even in the local Universe. Our study of ellipticals in a wide range of interaction stages, along with available ISM data will attempt to shed light on this possibly alternative mechanism for maintaining the observed ISM temperatures of elliptical galaxies.
Besides giant elliptical galaxies, a number of low-mass stellar systems inhabit the cores of galaxy clusters, such as dwarf elliptical galaxies (dEs/dSphs), ultra-compact dwarf galaxies (UCDs), and globular clusters. The detailed morphological examination of faint dwarf galaxies has, until recently, been limited to the Local Group (LG) and the two very nearby galaxy clusters Virgo and Fornax. Here, we compare the structural parameters of a large number of dEs/dSphs in the more distant clusters Hydra I and Centaurus to other dynamically hot stellar systems.
We examine the stellar mass assembly in galaxy cluster cores using data from the Cluster Lensing and Supernova survey with Hubble (CLASH). We measure the growth of brightest cluster galaxy (BCG) stellar mass, the fraction of the total cluster light which is in the intracluster light (ICL) and the numbers of mergers that occur in the BCG over the redshift range of the sample, 0.18<z<0.90. We find that BCGs grow in stellar mass by a factor of 1.4 on average from accretion of their companions, and this growth is reduced to a factor of 1.2 assuming 50% of the accreted stellar mass becomes ICL, in line with the predictions of simulations. We find that the ICL shows significant growth over this same redshift range, growing by a factor of of 4--5 in its contribution to the total cluster light. This result is in line with our previous findings for ICL at higher redshifts, however our measured growth is somewhat steeper than is predicted by simulations of ICL assembly. We find high mass companions and hence major merging (mergers with objects of masses $geq$1/2 of the BCG) to be very rare for our sample. We conclude that minor mergers (mergers with objects with masses $<$ 1/2 of the BCG) are the dominant process for stellar mass assembly at low redshifts, with the majority of the stellar mass from interactions ending up contributing to the ICL rather than building up the BCG. From a rough estimate of the stellar mass growth of the ICL we also conclude that the majority of the ICL stars must come from galaxies which fall from outside of the core of the cluster, as is predicted by simulations. It appears that the growth of the ICL is the major evolution event in galaxy cluster cores during the second half of the lifetime of the Universe.
Fossil galaxy groups are speculated to be old and highly evolved systems of galaxies that formed early in the universe and had enough time to deplete their $L^{*}$ galaxies through successive mergers of member galaxies, building up one massive central elliptical, but retaining the group X-ray halo. Considering that fossils are the remnants of mergers in ordinary groups, the merger history of the progenitor group is expected to be imprinted in the fossil central galaxy (FCG). We present for the first time radial gradients of single-stellar population (SSP) ages and metallicites in a sample of FCGs to constrain their formation scenario. Our sample comprises some of the most massive galaxies in the universe exhibiting an average central velocity dispersion of $sigma_0=271pm28$ km s$^{-1}$. Metallicity gradients are throughout negative with comparatively flat slopes of $ abla_{[rm{Fe/H}]}=- 0.19pm0.08$ while age gradients are found to be insignificant ($ abla_{rm{age}}=0.00pm0.05$). All FCGs lie on the fundamental plane, suggesting that they are virialised systems. We find that gradient strengths and central metallicities are similar to those found in cluster ellipticals of similar mass. The comparatively flat metallicity gradients with respect to those predicted by monolithic collapse ($ abla_{Z}=-0.5$) suggest that fossils are indeed the result of multiple major mergers. Hence we conclude that fossils are not failed groups that formed with a top heavy luminosity function. The low scatter of gradient slopes suggests a similar merging history for all galaxies in our sample.
Using SDSS-DR7, we construct a sample of 42382 galaxies with redshifts in the region of 20 galaxy clusters. Using two successive iterative methods, the adaptive kernel method and the spherical infall model, we obtained 3396 galaxies as members belonging to the studied sample. The 2D projected map for the distribution of the clusters members is introduced using the 2D adaptive kernel method to get the clusters centers. The cumulative surface number density profile for each cluster is fitted well with the generalized King model. The core radii of the clusters sample are found to vary from 0.18 Mpc $mbox{h}^{-1}$ (A1459) to 0.47 Mpc $mbox{h}^{-1}$ (A2670) with mean value of 0.295 Mpc $mbox{h}^{-1}$. The infall velocity profile is determined using two different models, Yahil approximation and Praton model. Yahil approximation is matched with the distribution of galaxies only in the outskirts (infall regions) of many clusters of the sample, while it is not matched with the distribution within the inner core of the clusters. Both Yahil approximation and Praton model are matched together in the infall region for about 9 clusters in the sample but they are completely unmatched for the clusters characterized by high central density. For these cluster, Yahil approximation is not matched with the distribution of galaxies, while Praton model can describe well the infall pattern of such clusters.