Do you want to publish a course? Click here

X-ray spectral study of the hot gas in three Clusters of Galaxies

404   0   0.0 ( 0 )
 Added by Yan Grange
 Publication date 2010
  fields Physics
and research's language is English
 Authors Y. G. Grange




Ask ChatGPT about the research

We study the physical properties of three clusters of galaxies, selected from a BeppoSAX Wide Field Camera (WFC) survey. These sources are identified as 1RXS J153934.7-833535, 1RXS J160147.6-754507, and 1RXS J081232.3-571423 in the ROSAT All-Sky Survey catalogue. We obtained XMM-Newton follow-up observations for these three clusters. We fit single and multi-temperature models to spectra obtained from the EPIC-pn camera to determine the temperature, the chemical composition of the gas and their radial distribution. Since two observations are contaminated by a high soft-proton background, we develop a new method to estimate the effect of this background on the data. For the first time, we present the temperature and iron abundance of two of these three clusters. The iron abundance of 1RXS J153934.7-33535 decreases with radius. The fits to the XMM-Newton and Chandra data show that the radial temperature profile within 3 towards the centre either flattens or lowers. A Chandra image of the source suggests the presence of X-ray cavities. The gas properties in 1RXS J160147.6-754507 are consistent with a flat radial distribution of iron and temperature within 2 from the centre. 1RXS J081232.3-571423 is a relatively cool cluster with a temperature of about 3 keV. The radial temperature and iron profiles suggest that 1RXS J153934.7-833535 is a cool core cluster. The Chandra image shows substructure which points toward AGN feedback in the core. The flat radial profiles of the temperature and iron abundance in 1RXS J160147.6-754507 are similar to the profiles of non-cool-core clusters.



rate research

Read More

We aim to determine the intrinsic variety, at a given mass, of the properties of the intracluster medium in clusters of galaxies. This requires a cluster sample selected independently of the intracluster medium content for which reliable masses and subsequent X-ray data can be obtained. We present one such sample, consisting of 34 galaxy clusters selected independently of their X-ray properties in the nearby ($0.050<z<0.135$) Universe and mostly with $14<log M_{500}/M_odot lesssim 14.5$, where masses are dynamically estimated. We collected the available X-ray observations from the archives and then observed the remaining clusters with the low-background Swift X-ray telescope, which is extremely useful for sampling a cluster population expected to have low surface brightness. We found that clusters display a large range (up to a factor 50) in X-ray luminosities within $r_{500}$ at a given mass, whether or not the central emission ($r<0.15 r_{500}$) is excised, unveiling a wider cluster population than seen in Sunayev-Zeldovich surveys or inferred from the population seen in X-ray surveys. The measured dispersion is $0.5$ dex in $L_X$ at a given mass.
We have performed a multi-wavelength analysis of two galaxy cluster systems selected with the thermal Sunyaev-Zeldovich (tSZ) effect and composed of cluster pairs and an inter-cluster filament. We have focused on one pair of particular interest: A399-A401 at redshift z~0.073 seperated by 3 Mpc. We have also performed the first analysis of one lower significance newly associated pair: A21-PSZ2 G114.09-34.34 at z~0.094, separated by 4.2 Mpc. We have characterised the intra-cluster gas using the tSZ signal from Planck and, when this was possible, the galaxy optical and infra-red (IR) properties based on two photometric redshift catalogs: 2MPZ and WISExSCOS. From the tSZ data, we measured the gas pressure in the clusters and in the inter-cluster filaments. In the case of A399-A401, the results are in perfect agreement with previous studies and, using the temperature measured from the X-rays, we further estimate the gas density in the filament and find n0=4.3+-0.7x10^-4 cm-3. The optical and IR colour-colour and colour-magnitude analyses of the galaxies selected in the cluster system, together with their Star Formation Rate, show no segregation between galaxy populations, in the clusters and in the filament of A399-A401. Galaxies are all passive, early type, and red and dead. The gas and galaxy properties of this system suggest that the whole system formed at the same time and corresponds to a pre-merger, with a cosmic filament gas heated by the collapse. For the other cluster system, the tSZ analysis was performed and the pressure in the clusters and in the inter-cluster filament was constrained. However, the limited or nonexistent optical and IR data prevent us from concluding on the presence of an actual cosmic filament or from proposing a scenario.
168 - E.Koulouridis , M.Plionis 2010
We present a study of X-ray AGN overdensities in 16 Abell clusters, within the redshift range 0.073<z<0.279, in order to investigate the effect of the hot inter-cluster environment on the triggering of the AGN phenomenon. The X-ray AGN overdensities, with respect to the field expectations, were estimated for sources with L_x>= 10^{42} erg s^{-1} (at the redshift of the clusters) and within an area of 1 h^{-1}_{72} Mpc radius (excluding the core). To investigate the presence or not of a true enhancement of luminous X-ray AGN in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of $r$-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of ~4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate t-student test. We conclude that the triggering of luminous X-ray AGN in rich clusters is strongly suppressed. Furthermore, searching for optical SDSS counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGN or stars. The true overdensity of X-ray point sources, associated to the clusters, is therefore even smaller than what our statistical approach revealed.
We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zeldovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z=1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster center and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping ($sqrt C_{rho}sim 1.2$ at $R_{200}$) in good agreement with recent observational estimates. The simulated $Y_{SZ}-M$ scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.
We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا