Do you want to publish a course? Click here

Multiscale autocorrelation function: a new approach to anisotropy studies

165   0   0.0 ( 0 )
 Added by Manlio De Domenico
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel catalog-independent method, based on a scale dependent approach, to detect anisotropy signatures in the arrival direction distribution of the ultra highest energy cosmic rays (UHECR). The method provides a good discrimination power for both large and small data sets, even in presence of strong contaminating isotropic background. We present some applications to simulated data sets of events corresponding to plausible scenarios for charged particles detected by world-wide surface detector-based observatories, in the last decades.



rate research

Read More

207 - David Wilman 2010
Physical processes influencing the properties of galaxies can be traced by the dependence and evolution of galaxy properties on their environment. A detailed understanding of this dependence can only be gained through comparison of observations with models, with an appropriate quantification of the rich parameter space describing the environment of the galaxy. We present a new, multiscale parameterization of galaxy environment which retains an observationally motivated simplicity whilst utilizing the information present on different scales. We examine how the distribution of galaxy (u-r) colours in the Sloan Digital Sky Survey (SDSS), parameterized using a double gaussian (red plus blue peak) fit, depends upon multiscale density. This allows us to probe the detailed dependence of galaxy properties on environment in a way which is independent of the halo model. Nonetheless, cross-correlation with the group catalogue constructed by Yang et al, 2007 shows that galaxy properties trace environment on different scales in a way which mimics that expected within the halo model. This provides independent support for the existence of virialized haloes, and important additional clues to the role played by environment in the evolution of the galaxy population. This work is described in full by Wilman et al., 2010, MNRAS, accepted
132 - S. Y. BenZvi 2011
A common problem in ultra-high energy cosmic ray physics is the comparison of energy spectra. The question is whether the spectra from two experiments or two regions of the sky agree within their statistical and systematic uncertainties. We develop a method to directly compare energy spectra for ultra-high energy cosmic rays from two different regions of the sky in the same experiment without reliance on agreement with a theoretical model of the energy spectra. The consistency between the two spectra is expressed in terms of a Bayes factor, defined here as the ratio of the likelihood of the two-parent source hypothesis to the likelihood of the one-parent source hypothesis. Unlike other methods, for example chi^2 tests, the Bayes factor allows for the calculation of the posterior odds ratio and correctly accounts for non-Gaussian uncertainties. The latter is particularly important at the highest energies, where the number of events is very small.
The normalized excess variance is a popular method used by many authors to estimate the variability of active galactic nuclei (AGNs), especially in the X-ray band. We show that this estimator is affected by the cosmological time dilation, so that it should be appropriately corrected when applied to AGN samples distributed in wide redshift intervals. We propose a formula to modify this estimator, based on the use of the structure function. To verify the presence of the cosmological effect and the reliability of the proposed correction, we use data extracted from the XMM-Newton Serendipitous Source Catalogue, data release 5 (XMMSSC-DR5), and cross-matched with the Sloan Digital Sky Survey quasar catalogue, of data release 7 and 12.
Ordinary fracture functions, describing hadrons production in the deep inelastic scattering target fragmentation region, are generalized to account for the production of hadrons in arbitrary number, thus offering a renewed framework for dealing with QCD initial state radiation. We also propose a new jet-like observable which measures beam remnants and low-$p_{perp}$ scattering fragments and derive its QCD evolution equations by using Jet Calculus. Possible implications for semi-inclusive deep inelastic scattering and hadron-hadron reactions are shortly discussed.
The capability of NuSTAR to detect polarization in the Compton scattering regime (>50 keV) has been investigated. The NuSTAR mission, flown on June 2012 a Low Earth Orbit (LEO), provides a unique possibility to confirm the findings of INTEGRAL on the polarization of cosmic sources in the hard X-rays. Each of the two focal plane detectors are high resolution pixellated CZT arrays, sensitive in the energy range ~ 3 - 80 keV. These units have intrinsic polarization capabilities when the proper information on the double events is transmitted on ground. In this case it will be possible to detect polarization from bright sources on timescales of the order of 10^5s
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا