Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV $e^+$ on 8 GeV $e^-$ asymmetric energy collider. We investigate the collision timing {tip} and its $z$-coordinate along the beam axis {zip} as a function of the position of the colliding bunch in a beam train. The various {tip} and {zip} behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We report these results in detail and discuss the prospects for the SuperKEKB collider.
This paper presents results that take a critical step toward proving 10 ps timing resolutions feasibility for particle identification in the TOPSiDE detector concept for the Electron-Ion Collider. Measurements of LGADs with a thickness of 35 micro-m and 50 micro-m are evaluated with a 120 GeV proton beam. The performance of the gain and timing response is assessed, including the dependence on the reverse bias voltage and operating temperature. The best timing resolution of UFSDs in a test beam to date is achieved using three combined planes of 35 micro-m thick LGADs at -30 degree celsius with a precision of 14.3 ps (uncertainty 1.5 ps).
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of the Standard Model by performing precision measurements of its parameters, and provide sensitivity to many rare decays that are currently inaccessible. This will require major upgrades to both the accelerator and detector subsystems. The imaging Time-of-propagation (iTOP) detector will be a new subdetector of Belle-II that will perform an integral role in Particle identification (PID). It will comprise 16 modules between the tracking detectors and calorimeter; each module consisting of a quartz radiator, approximately 2.5m in length, instrumented with an array of 32 micro-channel plate photodetectors (MCP-PMTs). The passage of charged particles through the quartz will produce a cone of Cherenkov photons that will propagate along the length of the quartz, and be detected by the MCP-PMTs. The excellent spatial, and timing resolution (of 50 picoseconds) of the iTOP system will provide superior particle identification capabilities, particularly allowing for enhanced discrimination between pions and kaons that will be essential for many of the key measurements to performed. The status of the construction of the iTOP subdetector, and performance studies of prototypes at beam tests will be presented, together with prospects for physics measurements that will utilise the PID capabilities of the iTOP system.
The Aerogel Ring Imaging Cherenkov (ARICH) counter serves as a particle identification device in the forward end-cap region of the Belle II spectrometer. It is capable of identifying pions and kaons with momenta up to $4 , {rm GeV}/c$ by detecting Cherenkov photons emitted in the silica aerogel radiator. After the detector alignment and calibration of the probability density function, we evaluate the performance of the ARICH counter using early beam collision data. Event samples of $D^{ast +} to D^0 pi^+ (D^0 to K^-pi^+)$ were used to determine the $pi(K)$ efficiency and the $K(pi)$ misidentification probability. We found that the ARICH counter is capable of separating kaons from pions with an identification efficiency of $93.5 pm 0.6 , %$ at a pion misidentification probability of $10.9 pm 0.9 , %$. This paper describes the identification method of the counter and the evaluation of the performance during its early operation.
The Resistive Plate Chambers (RPCs) are employed in the CMS experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This note presents results of the RPC detector uniformity and stability during the 2011 data taking period, and preliminary results obtained with 2012 data. The detector uniformity has been ensured with a dedicated High Voltage scan with LHC collisions, in order to determine the optimal operating working voltage of each individual RPC chamber installed in CMS. Emphasis is given on the procedures and results of the High Voltage calibration. Moreover, an increased detector stability has been obtained by automatically taking into account temperature and atmospheric pressure variations in the CMS cavern.
For the high luminosity upgrade of the LHC at CERN, ATLAS is considering the addition of a High Granularity Timing Detector (HGTD) in front of the end cap and forward calorimeters at |z| = 3.5 m and covering the region 2.4 < |{eta}| < 4 to help reducing the effect of pile-up. The chosen sensors are arrays of 50 {mu}m thin Low Gain Avalanche Detectors (LGAD). This paper presents results on single LGAD sensors with a surface area of 1.3x1.3 mm2 and arrays with 2x2 pads with a surface area of 2x2 mm^2 or 3x3 mm^2 each and different implant doses of the p+ multiplication layer. They are obtained from data collected during a beam test campaign in Autumn 2016 with a pion beam of 120 GeV energy at the CERN SPS. In addition to several quantities measured inclusively for each pad, the gain, efficiency and time resolution have been estimated as a function of the position of the incident particle inside the pad by using a beam telescope with a position resolution of few {mu}m. Different methods to measure the time resolution are compared, yielding consistent results. The sensors with a surface area of 1.3x1.3 mm^2 have a time resolution of about 40 ps for a gain of 20 and of about 27 ps for a gain of 50 and fulfill the HGTD requirements. Larger sensors have, as expected, a degraded time resolution. All sensors show very good efficiency and time resolution uniformity.
H.Kichimi
,K.Trabelsi
,S.Uehara
.
(2010)
.
"KEKB Beam Collision Stability at the Picosecond Timing and Micron Position Resolution as observed with the Belle Detector"
.
Hiromichi Kichimi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا