Do you want to publish a course? Click here

Attosecond electron spectroscopy using a novel interferometric pump-probe technique

163   0   0.0 ( 0 )
 Added by Johan Mauritsson
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original attosecond pulse. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multi-path interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the attosecond pulse duration.



rate research

Read More

In a seminal article, Fano predicts that absorption of light occurs preferably with increase of angular momentum. Here we generalize Fanos propensity rule to laser-assisted photoionization, consisting of absorption of an extreme-ultraviolet photon followed by absorption or emission of an infrared photon. The predicted asymmetry between absorption and emission leads to incomplete quantum interference in attosecond photoelectron interferometry. It explains both the angular-dependence of the photoionization time delays and the delay-dependence of the photoelectron angular distributions. Our theory is verified by experimental results in Ar in the 20-40 eV range.
Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond timescales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously only allowed the time-resolved investigation of two-photon, two-electron interactions. Here we demonstrate attosecond control over double and triple ionization of argon atoms involving the absorption of up to five XUV photons. In an XUV-pump XUV-probe measurement using a pair of attosecond pulse trains (APTs), the Ar$^{2+}$ ion yield exhibits a weak delay dependence, showing that its generation predominantly results from the sequential emission of two electrons by photoabsorption from the two APTs. In contrast, the Ar$^{3+}$ ion yield exhibits strong modulations as a function of the delay, which is a clear signature of the simultaneous absorption of at least two XUV photons. The experimental results are well reproduced by numerical calculations that provide detailed insights into the ionization dynamics. Our results open up new opportunities for the investigation and control of multi-electron dynamics and complex electron correlation mechanisms on extremely short timescales.
In high-resolution core-valence-valence (CVV) Auger electron spectroscopy from the surface of a solid at thermal equilibrium, the main correlation satellite, visible in the case of strong valence-electron correlations, corresponds to a bound state of the two holes in the final state of the CVV Auger process. We discuss the physical significance of this satellite in nonequilibrium pump-probe Auger spectroscopy by numerical analysis of a single-band Hubbard-type model system including core states and a continuum of high-energy scattering states. It turns out that the spectrum of the photo-doped system, due to the increased double occupancy, shares features with the equilibrium spectrum at higher fillings. The pumping of doublons can be watched when working with overlapping pulses at short $Delta t$. For larger pump-probe delays $Delta t$ and on the typical femtosecond time scale for electronic relaxation processes, spectra are hardly $Delta t$-dependent, reflecting the high stability of bound two-hole states for strong Hubbard-$U$. We argue that taking into account the spatial expansion of single-particle orbitals when these are doubly occupied, as described by the dynamical Hubbard model, produces an oscillation of the barycenter of the satellite as a function of $Delta t$. Pump-probe Auger-electron spectroscopy is thus highly sensitive to dynamical screening of the Coulomb interaction.
Studies of ultrafast dynamics along with femtosecond-pulse metrology rely on non-linear processes, induced solely by the exciting/probing pulses or the pulses to be characterized. Extension of these approaches to the extreme-ultraviolet (XUV) spectral region opens up a new, direct route to attosecond scale dynamics. Limitations in available intensities of coherent XUV continua kept this prospect barren. The present work overcomes this barrier. Reaching condition at which simultaneous ejection of two bound electrons by two-XUV-photon absorption becomes more efficient than their one-by-one removal it is succeeded to probe atomic coherences, evolving at the 1fs scale, and determine the XUV-pulse duration. The investigated rich and dense in structure autoionizing manifold ascertains applicability of the approach to complex systems. This initiates the era of XUV-pump-XUV-probe experiments with attosecond resolution.
We present an innovative beamline for extreme ultraviolet (XUV)-infrared (IR) pump-probe reflection spectroscopy in solids with attosecond temporal resolution. The setup uses an actively stabilized interferometer, where attosecond pulse trains or isolated attosecond pulses are produced by high-order harmonic generation in gases. After collinear recombination, the attosecond XUV pulses and the femtosecond IR pulses are focused twice in sequence by toroidal mirrors, giving two spatially separated interaction regions. In the first region, the combination of a gas target with a time-of-flight spectrometer allows for attosecond photoelectron spectroscopy experiments. In the second focal region, an XUV reflectometer is used for attosecond transient reflection spectroscopy (ATRS) experiments. Since the two measurements can be performed simultaneously, precise pump-probe delay calibration can be achieved, thus opening the possibility for a new class of attosecond experiments on solids. Successful operation of the beamline is demonstrated by the generation and characterization of isolated attosecond pulses, the measurement of the absolute reflectivity of SiO2, and by performing simultaneous photoemission/ATRS in Ge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا