Do you want to publish a course? Click here

Pump-probe Auger-electron spectroscopy of Mott insulators

115   0   0.0 ( 0 )
 Added by Michael Potthoff
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In high-resolution core-valence-valence (CVV) Auger electron spectroscopy from the surface of a solid at thermal equilibrium, the main correlation satellite, visible in the case of strong valence-electron correlations, corresponds to a bound state of the two holes in the final state of the CVV Auger process. We discuss the physical significance of this satellite in nonequilibrium pump-probe Auger spectroscopy by numerical analysis of a single-band Hubbard-type model system including core states and a continuum of high-energy scattering states. It turns out that the spectrum of the photo-doped system, due to the increased double occupancy, shares features with the equilibrium spectrum at higher fillings. The pumping of doublons can be watched when working with overlapping pulses at short $Delta t$. For larger pump-probe delays $Delta t$ and on the typical femtosecond time scale for electronic relaxation processes, spectra are hardly $Delta t$-dependent, reflecting the high stability of bound two-hole states for strong Hubbard-$U$. We argue that taking into account the spatial expansion of single-particle orbitals when these are doubly occupied, as described by the dynamical Hubbard model, produces an oscillation of the barycenter of the satellite as a function of $Delta t$. Pump-probe Auger-electron spectroscopy is thus highly sensitive to dynamical screening of the Coulomb interaction.



rate research

Read More

122 - O. Abdurazakov 2018
We study the role of excited phonon populations in the relaxation rates of nonequilibrium electrons using a nonequilibrium Greens function formalism. The transient modifications in the phononic properties are accounted for by self-consistently solving the Dyson equation for the electron and phonon Greens functions. The pump induced changes manifest in both the electronic and phononic spectral functions. We find that the excited phonon populations suppress the decay rates of nonequilibrium electrons due to enhanced phonon absorption. The increased phonon occupation also sets the nonequilibrium decay rates and the equilibrium scattering rates apart. The decay rates are found to be time-dependent, and this is illustrated in the experimentally observed population decay of photoexcited $mathrm{Bi}_{1.5}mathrm{Sb}_{0.5} mathrm{Te}_{1.7}mathrm{Se}_{1.3}$.
We present the results of the magnetic and specific heat measurements on V4 tetrahedral-cluster compound GaV4S8 between 2 to 300K. We find two transitions related to a structural change at 42K followed by ferromagnetic order at 12K on cooling. Remarkably similar properties were previously reported for the cluster compounds of Mo4. These compounds show an extremely high density of low energy excitations in their electronic properties. We explain this behavior in a cluster compound as due to the reduction of coulomb repulsion among electrons that occupy highly degenerate orbits of different clusters.
101 - Saikat Banerjee , Umesh Kumar , 2021
The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theory. In the Mott insulators with inversion symmetry, we find that the effective magnetic field induced by the IFE couples ferromagnetically to the neighboring spins. While for the Mott insulators without inversion symmetry, the effective magnetic field due to IFE couples antiferromagnetically to the neighboring spins. We apply the theory to the spin-orbit coupled single- and multi-orbital Hubbard model that is relevant for the Kitaev quantum spin liquid materials and demonstrate that the magnetic interactions can be tuned by light.
198 - Y. Ishida , T. Otsu , T.Shimada 2015
Recent studies suggest that an exemplary Kondo insulator SmB6 belongs to a new class of topological insulators (TIs), in which non-trivial spin-polarized metallic states emerge on surface upon the formation of Kondo hybridization gap in the bulk. Remarkably, the bulk resistivity reaches more than 20 Ohm cm at 4 K, making SmB6 a candidate for a so-called bulk-insulating TI. We here investigate optical-pulse responses of SmB6 by pump-and-probe photoemission spectroscopy. Surface photovoltage effect is observed below ~90 K. This indicates that an optically-active band bending region develops beneath the novel metallic surface upon the bulk-gap evolution. The photovoltaic effect persists for >200 microsec, which is long enough to be detected by electronics devices, and could be utilized for optical gating of the novel metallic surface.
Robust engineering of phonon squeezed states in optically excited solids has emerged as a promising tool to control and manipulate their properties. However, in contrast to quantum optical systems, detection of phonon squeezing is subtle and elusive, and an important question is what constitutes an unambiguous signature of it. The state of the art involves observing oscillations at twice the phonon frequency in time resolved measurements of the out of equilibrium phonon fluctuation. Using Keldysh formalism we show that such a signal is a necessary but not a sufficient signature of a squeezed phonon, since we identify several mechanisms that do not involve squeezing and yet which produce similar oscillations. We show that a reliable detection requires a time and frequency resolved measurement of the phonon spectral function.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا