No Arabic abstract
The Sun supports a rich spectrum of internal waves that are continuously excited by turbulent convection. The GONG network and the MDI/SOHO space instrument provide an exceptional data base of spatially-resolved observations of solar oscillations, covering an entire sunspot cycle (11 years). Local helioseismology is a set of tools for probing the solar interior in three dimensions using measurements of wave travel times and local mode frequencies. Local helioseismology has discovered (i) near-surface vector flows associated with convection (ii) 250 m/s subsurface horizontal outflows around sunspots (iii) ~50 m/s extended horizontal flows around active regions (converging near the surface and diverging below), (iv) the effect of the Coriolis force on convective flows and active region flows (v) the subsurface signature of the 15 m/s poleward meridional flow, (vi) a +/-5 m/s time-varying depth-dependent component of the meridional circulation around the mean latitude of activity, and (vii) magnetic activity on the far side of the Sun.
Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult to observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $sim$1 to $ge$5 MK. Shortly afterwards, warm flare loops ($sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magnetic reconnection in a 3D configuration and reveal its origin.
Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this issue of PNAS, Hanasoge et al. (2012) employ recent helioseismic observations to derive stringent empirical constraints on the amplitude of large-scale convective velocities in the solar interior. They report an upper limit that is far smaller than predicted by a popular hydrodynamic numerical simulation.
Time-distance helioseismology and related techniques show great promise for probing the structure and dynamics of the subphotospheric layers of the Sun. Indeed time-distance helioseismology has already been applied to make inferences about structures and flows under sunspots and active regions, to map long-lived convective flow patterns, and so on. Yet certainly there are still many inadequacies in the current approaches and, as the data get better and the questions we seek to address get more subtle, methods that were previously regarded as adequate are no longer acceptable. Here we give a short and partial description of outstanding problems in local helioseismology, using time-distance helioseismology as a guiding example.
In the near future, Parker Solar Probe will put theories about the dynamics and nature of the transition between the solar corona and the solar wind to stringent tests. The most popular mechanism aimed to explain the dynamics of the nascent solar wind, including its heating and acceleration is magnetohydrodynamic (MHD) turbulence. Most of the previous models focus on nonlinear cascade induced by interactions of outgoing Alfven waves and their reflections, ignoring effects that might be related to perpendicular structuring of the solar coronal plasma, despite overwhelming evidence for it. In this paper, for the first time, we analyse through 3D MHD numerical simulations the dynamics of the perpendicularly structured solar corona and solar wind, from the low corona to 15 R_Sun. We find that background structuring has a strong effect on the evolution of MHD turbulence, on much faster time scales than in the perpendicularly homogeneous case. On time scales shorter than nonlinear times, linear effects related to phase mixing result in a 1/f perpendicular energy spectrum. As the turbulent cascade develops, we observe a perpendicular (parallel) energy spectrum with the power law index of -3/2 or -5/3 (-2), a steeper perpendicular magnetic field than velocity spectrum, and a strong build-up of negative residual energy. We conclude that the turbulence is most probably generated by the self-cascade of the driven transverse kink waves, referred to previously as `uniturbulence, which might represent the dominant nonlinear energy cascade channel in the pristine solar wind.
The energetic balance of the Standard Solar Model (SSM) results from an equilibrium between nuclear energy production, energy transfer, and photospheric emission. In this letter, we derive an order of magnitude of several % for the loss of energy in kinetic energy, magnetic energy, and X or UV radiation during the whole solar lifetime from the observations of the present Sun. We also estimate the mass loss from the observations of young solar analogs which could reach up to 30% of the current mass. We deduce new models of the present Sun, their associated neutrino fluxes, and their internal sound-speed profile. This approach sheds quantitative lights on the disagreement between the sound speed obtained by helioseismology and the sound speed derived from the SSM including the updated photospheric CNO abundances, based on recent observations. We conclude that about 20% of the present discrepancy could come from the incorrect description of the early phases of the Sun, its activity, its initial mass and mass-loss history. This study has obvious consequences on the solar system formation and the early evolution of the closest planets.