Do you want to publish a course? Click here

The Calan-Hertfordshire Extrasolar Planet Search

107   0   0.0 ( 0 )
 Added by James Jenkins Dr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detailed study of the exoplanetary systems HD189733 and HD209458 has given rise to a wealth of exciting information on the physics of exoplanetary atmospheres. To further our understanding of the make-up and processes within these atmospheres we require a larger sample of bright transiting planets. We have began a project to detect more bright transiting planets in the southern hemisphere by utilising precision radial-velocity measurements. We have observed a constrained sample of bright, inactive and metal-rich stars using the HARPS instrument and here we present the current status of this project, along with our first discoveries which include a brown dwarf/extreme-Jovian exoplanet found in the brown dwarf desert region around the star HD191760 and improved orbits for three other exoplanetary systems HD48265, HD143361 and HD154672. Finally, we briefly discuss the future of this project and the current prospects we have for discovering more bright transiting planets.



rate research

Read More

We report the discovery of eight new giant planets, and updated orbits for four known planets, orbiting dwarf and subgiant stars using the CORALIE, HARPS, and MIKE instruments as part of the Calan-Hertfordshire Extrasolar Planet Search. The planets have masses in the range 1.1-5.4MJs, orbital periods from 40-2900 days, and eccentricities from 0.0-0.6. They include a double-planet system orbiting the most massive star in our sample (HD147873), two eccentric giant planets (HD128356b and HD154672b), and a rare 14 Herculis analogue (HD224538b). We highlight some population correlations from the sample of radial velocity detected planets orbiting nearby stars, including the mass function exponential distribution, confirmation of the growing body of evidence that low-mass planets tend to be found orbiting more metal-poor stars than giant planets, and a possible period-metallicity correlation for planets with masses >0.1MJ, based on a metallicity difference of 0.16 dex between the population of planets with orbital periods less than 100 days and those with orbital periods greater than 100 days.
In these proceedings we give a status update of the Calan-Hertfordshire Extrasolar Planet Search, an international collaboration led from Chile that aims to discover more planets around super metal-rich and Sun-like stars, and then follow these up with precision photometry to hunt for new bright transit planets. We highlight some results from this program, including exoplanet and brown dwarf discoveries, and a possible correlation between metallicity and planetary minimum mass at the lowest planetary masses detectable. Finally we discuss the short-term and long-term future pathways this program can take.
147 - R. F. Diaz 2011
The mass domain where massive extrasolar planets and brown dwarfs lay is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly due to the paucity of this kind of objects orbiting close to solar-type stars, the so-called brown dwarf desert, that hinders setting up a strong observational base to compare to models and theories of formation and evolution. We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. The initial identification of sub-stellar candidates is done using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, is done by means of different spectroscopic diagnostics, as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission and a novel method of simulating stellar cross-correlation functions. Seven new objects with minimum masses between ~ 10 Mjup and ~90 Mjup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved on the parameters of an already-known brown dwarf (HD137510b), confirmed by astrometry.
The existence of water in extrasolar planetary systems is of great interest as it constrains the potential for habitable planets and life. Here, we report the identification of a circumstellar disk that resulted from the destruction of a water-rich and rocky, extrasolar minor planet. The parent body formed and evolved around a star somewhat more massive than the Sun, and the debris now closely orbits the white dwarf remnant of the star. The stellar atmosphere is polluted with metals accreted from the disk, including oxygen in excess of that expected for oxide minerals, indicating the parent body was originally composed of 26% water by mass. This finding demonstrates that water-bearing planetesimals exist around A- and F-type stars that end their lives as white dwarfs.
121 - C. Moutou , G. Hebrard , F.Bouchy 2013
We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, $P$ = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا