Do you want to publish a course? Click here

The SOPHIE search for northern extrasolar planets: VI. Three new hot Jupiters in multi-planet extrasolar systems

121   0   0.0 ( 0 )
 Added by Claire Moutou
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, $P$ = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.



rate research

Read More

We report the discovery of a planetary system around HD9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory during more than two years. At least two planets orbit this G5V, active star: HD9446b has a minimum mass of 0.7 M_Jup and a slightly eccentric orbit with a period of 30 days, whereas HD9446c has a minimum mass of 1.8 M_Jup and a circular orbit with a period of 193 days. As for most of the known multi-planet systems, the HD9446-system presents a hierarchical disposition, with a massive outer planet and a lighter inner planet.
147 - R. F. Diaz 2011
The mass domain where massive extrasolar planets and brown dwarfs lay is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly due to the paucity of this kind of objects orbiting close to solar-type stars, the so-called brown dwarf desert, that hinders setting up a strong observational base to compare to models and theories of formation and evolution. We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. The initial identification of sub-stellar candidates is done using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, is done by means of different spectroscopic diagnostics, as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission and a novel method of simulating stellar cross-correlation functions. Seven new objects with minimum masses between ~ 10 Mjup and ~90 Mjup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved on the parameters of an already-known brown dwarf (HD137510b), confirmed by astrometry.
Context. Due to their low transit probability, the long-period planets are, as a population, only partially probed by transit surveys. Radial velocity surveys thus have a key role to play, in particular for giant planets. Cold Jupiters induce a typical radial velocity semi-amplitude of 10m.s^{-1}, which is well within the reach of multiple instruments that have now been in operation for more than a decade. Aims. We take advantage of the ongoing radial velocity survey with the sophie high-resolution spectrograph, which continues the search started by its predecessor elodie to further characterize the cold Jupiter population. Methods. Analyzing the radial velocity data from six bright solar-like stars taken over a period of up to 15 years, we attempt the detection and confirmation of Keplerian signals. Results. We announce the discovery of six planets, one per system, with minimum masses in the range 2.99-8.3 Mjup and orbital periods between 200 days and 10 years. The data do not provide enough evidence to support the presence of additional planets in any of these systems. The analysis of stellar activity indicators confirms the planetary nature of the detected signals. Conclusions. These six planets belong to the cold and massive Jupiter population, and four of them populate its eccentric tail. In this respect, HD 80869 b stands out as having one of the most eccentric orbits, with an eccentricity of 0.862^{+0.028}_{-0.018}. These planets can thus help to better constrain the migration and evolution processes at play in the gas giant population. Furthermore, recent works presenting the correlation between small planets and cold Jupiters indicate that these systems are good candidates to search for small inner planets.
73 - R.F. Diaz 2016
We report the discovery of three new substellar companions to solar-type stars, HD191806, HD214823, and HD221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 Mjup and 19 Mjup. Additionally, we find that the star HD191806 is experiencing a secular acceleration of over 11 ms per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD221585, whose companion must be substellar. With the exception of HD191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop.
We present new radial velocity measurements for three low-metallicity solar-like stars observed with the SOPHIE spectrograph and its predecessor ELODIE, both installed at the 193 cm telescope of the Haute-Provence Observatory, allowing the detection and characterization of three new giant extrasolar planets in intermediate periods of 1.7 to 3.7 years. All three stars, HD17674, HD42012 and HD29021 present single giant planetary companions with minimum masses between 0.9 and 2.5 MJup. The range of periods and masses of these companions, along with the distance of their host stars, make them good targets to look for astrometric signals over the lifetime of the new astrometry satellite Gaia. We discuss the preliminary astrometric solutions obtained from the first Gaia data release.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا