Do you want to publish a course? Click here

Growth dynamics and thickness-dependent electronic structure of topological insulator Bi2Te3 thin films on Si

289   0   0.0 ( 0 )
 Added by Jinfeng Jia
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use real-time reflection high energy electron diffraction intensity oscillation to establish the Te-rich growth dynamics of topological insulator thin films of Bi2Te3 on Si(111) substrate by molecular beam epitaxy. In situ angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy and ex situ transport measurements reveal that the as-grown Bi2Te3 films without any doping are an intrinsic topological insulator with its Fermi level intersecting only the metallic surface states. Experimentally, we find that the single-Dirac-cone surface state develops at a thickness of two quintuple layers (2 QL). Theoretically, we show that the interaction between the surface states from both sides of the film, which is determined by the penetration depth of the topological surface state wavefunctions, sets this lower thickness limit.



rate research

Read More

We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla up to 60 Tesla. We demonstrate that the strong linear-like MR at high field can be well understood as the weak antilocalization phenomena described by Hikami-Larkin-Nagaoka theory. Our analysis suggests that in our system, a topological insulator, the elastic scattering time can be longer than the spin-orbit scattering time. We briefly discuss our results in the context of Dirac Fermion physics and quantum linear magnetoresistance.
301 - Yuchen Ji , Zheng Liu , Peng Zhang 2021
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chiral edge conduction at zero magnetic field, effective exchange field arisen from the aligned magnetic dopants needs to be large enough to yield specific spin sub-band configurations. Here we report the thickness-tailored quantum anomalous Hall (QAH) effect in Cr-doped (Bi,Sb)2Te3 thin films by tuning the system across the two-dimensional (2D) limit. In addition to the Chern number-related metal-to-insulator QAH phase transition, we also demonstrate that the induced hybridization gap plays an indispensable role in determining the ground magnetic state of the MTIs, namely the spontaneous magnetization owning to considerable Van Vleck spin susceptibility guarantees the zero-field QAH state with unitary scaling law in thick samples, while the quantization of the Hall conductance can only be achieved with the assistance of external magnetic fields in ultra-thin films. The modulation of topology and magnetism through structural engineering may provide a useful guidance for the pursuit of QAH-based new phase diagrams and functionalities.
Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the magnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology and magnetism in the non-equilibrium regime and extend optoelectronic device applications to topological materials.
An interface electron state at the junction between a three-dimensional topological insulator (TI) film of Bi2Se3 and a ferrimagnetic insulator film of Y3Fe5O12 (YIG) was investigated by measurements of angle-resolved photoelectron spectroscopy and X-ray absorption magnetic circular dichroism (XMCD). The surface state of the Bi2Se3 film was directly observed and localized 3d spin states of the Fe3+ state in the YIG film were confirmed. The proximity effect is likely described in terms of the exchange interaction between the localized Fe 3d electrons in the YIG film and delocalized electrons of the surface and bulk states in the Bi2Se3 film. The Curie temperature (TC) may be increased by reducing the amount of the interface Fe2+ ions with opposite spin direction observable as a pre-edge in the XMCD spectra.
3D topological insulators, similar to the Dirac material graphene, host linearly dispersing states with unique properties and a strong potential for applications. A key, missing element in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Analogy with graphene suggests a possible avenue via a topographic route by the formation of superlattice structures such as a moire patterns or ripples, which can induce controlled potential variations. However, while the charge and lattice degrees of freedom are intimately coupled in graphene, it is not clear a priori how a physical buckling or ripples might influence the electronic structure of topological insulators. Here we use Fourier transform scanning tunneling spectroscopy to determine the effects of a one-dimensional periodic buckling on the electronic properties of Bi2Te3. By tracking the spatial variations of the scattering vector of the interference patterns as well as features associated with bulk density of states, we show that the buckling creates a periodic potential modulation, which in turn modulates the surface and the bulk states. The strong correlation between the topographic ripples and electronic structure indicates that while doping alone is insufficient to create predetermined potential landscapes, creating ripples provides a path to controlling the potential seen by the Dirac electrons on a local scale. Such rippled features may be engineered by strain in thin films and may find use in future applications of topological insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا