Do you want to publish a course? Click here

Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy

361   0   0.0 ( 0 )
 Added by Shin'ichiro Ando
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, differ for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in u_mu- u_tau oscillations, improving the current sensitivity to such effects by seven orders of magnitude. Lorentz/CPT violation in electron-neutrino oscillations may be probed with the zenith-angle dependence for high-energy atmospheric neutrinos. The ``smoking gun, for DE-neutrino coupling would, however, be a dependence of neutrino oscillations on the direction of the neutrino momentum relative to our peculiar velocity with respect to the CMB rest frame. While the amplitude of this directional dependence is expected to be small, it may nevertheless be worth seeking in current data and may be a target for future neutrino experiments.



rate research

Read More

We analyze many aspects of the phenomenon of the decoherence for neutrinos propagating in long baseline experiments. We show that, in the presence of an off-diagonal term in the dissipative matrix, the Majorana neutrino can violate the CP T symmetry, which, on the contrary, is preserved for Dirac neutrinos. We show that oscillation formulas for Majorana neutrinos depend on the choice of the mixing matrix U. Indeed, different choices of U lead to different oscillation formulas. Moreover, we study the possibility to reveal the differences between Dirac and Majorana neutrinos in the oscillations. We use the present values of the experimental parameters in order to relate our theoretical proposal with experiments.
175 - Ralf Lehnert 2009
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.
A framework is presented for the factorization of high-energy hadronic processes in the presence of Lorentz and CPT violation. The comprehensive effective field theory describing Lorentz and CPT violation, the Standard-Model Extension, is used to demonstrate factorization of the hadronic tensor at leading order in electroweak interactions for deep inelastic scattering and for the Drell-Yan process. Effects controlled by both minimal and nonminimal coefficients for Lorentz violation are explored, and the equivalent parton-model description is derived. The methodology is illustrated by determining cross sections and studying estimated attainable sensitivities to Lorentz violation using real data collected at the Hadronen-Elektronen Ring Anlage and the Large Hadron Collider and simulated data for the future US-based electron-ion collider.
137 - Alan Kostelecky 2020
This talk at the CPT19 meeting outlines a few recent developments in Lorentz and CPT violation, with particular attention to results obtained by researchers at the Indiana University Center for Spacetime Symmetries.
This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا