Do you want to publish a course? Click here

Phase-resolved spectral analysis of 4U 1901+03 during its outburst

139   0   0.0 ( 0 )
 Added by YaJuan Lei
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The high mass X-ray binary 4U 1901+03 was reported to have the pulse profile evolving with the X-ray luminosity and energy during its outburst in February-July 2003: the pulse peak changed from double to single along with the decreasing luminosity. We have carried out a detailed analysis on the contemporary phase-resolved energy spectrum of 4U 1901+03 as observed by Rossi X-ray Timing Explorer (RXTE). We find that, both the continuum and the pulse spectra are phase dependent. The optical depth derived from the pulse spectrum is in general larger than that from the continuum. Fe Ka emission line is only detected in the spectrum of the continuum and is missing in the pulse spectrum. This suggests an origin of Fe emission from the accretion disk but not the surface of the neutron star.



rate research

Read More

75 - L. Ji , L. Ducci , A. Santangelo 2020
We report on our analysis of the 2019 outburst of the X-ray accreting pulsar 4U 1901+03 observed with Insight-HXMT and NICER. Both spectra and pulse profiles evolve significantly in the decaying phase of the outburst. Dozens of flares are observed throughout the outburst. They are more frequent and brighter at the outburst peak. We find that the flares, which have a duration from tens to hundreds of seconds, are generally brighter than the persistent emission by a factor of $sim$ 1.5. The pulse profile shape during the flares can be significantly different than that of the persistent emission. In particular, a phase shift is clearly observed in many cases. We interpret these findings as direct evidence of changes of the pulsed beam pattern, due to transitions between the sub- and super-critical accretion regimes on a short time scale. We also observe that at comparable luminosities the flares pulse profiles are rather similar to those of the persistent emission. This indicates that the accretion on the polar cap of the neutron star is mainly determined by the luminosity, i.e., the mass accretion rate.
55 - P. Reig 2016
The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, complex changes in the pulse profiles, and pulse phase dependent spectral variability. We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical regime. Only at the end of the outburst, when the luminosity decreased below ~10^{36} (d/10 kpc)^2 erg/s, did the source enter the propeller regime. Evidence for the existence of these regimes comes from the pulse profiles, the shape of the hardness-intensity diagram, and the correlation of various spectral parameters with the flux. The 10 keV feature appears to strongly depend on the X-ray flux and on the pulse phase, which opens the possibility to interpret this feature as a cyclotron line.
104 - N. La Palombara 2016
We report on the results of Swift and XMM-Newton observations of SMC X-2 during its last outburst in 2015 October, the first one since 2000. The source reached a very high luminosity ($L sim 10^{38}$ erg s$^{-1}$), which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period $P_{rm spin}$ = 2.372267(5) s and a characterization of the pulse profile also at low energies. The main spectral component is a hard ($Gamma simeq 0$) power-law model with an exponential cut-off, but at low energies we detected also a soft (with kT $simeq$ 0.15 keV) thermal component. Several emission lines can be observed at various energies. The identification of these features with the transition lines of highly ionized N, O, Ne, Si, and Fe suggests the presence of photoionized matter around the accreting source.
138 - N. La Palombara 2017
We report on the results of the $XMM-Newton$ observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux $f sim 10^{-10}$ erg cm$^{-2}$ s$^{-1}$, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period $P_{rm spin}$ = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disk provides a realiable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.
143 - M.M. Serim 2021
We investigate timing and spectral characteristics of the transient X-ray pulsar 2S 1417$-$624 during its 2018 outburst with emph{NICER} follow up observations. We describe the spectra with high-energy cut-off and partial covering fraction absortion (PCFA) model and present flux-dependent spectral changes of the source during the 2018 outburst. Utilizing the correlation-mode switching of the spectral model parameters, we confirm the previously reported sub-critical to critical regime transitions and we argue that secondary transition from the gas-dominated to the radiation pressure-dominated disc do not lead to significant spectral changes below 12 keV. Using the existing accretion theories, we model the spin frequency evolution of 2S 1417$-$624 and investigate the noise processes of a transient X-ray pulsar for the first time using both polynomial and luminosity-dependent models for the spin frequency evolution. For the first model, the power density spectrum of the torque fluctuations indicate that the source exhibits red noise component ($Gamma sim -2$) within the timescales of outburst duration which is typical for disc-fed systems. On the other hand, the noise spectrum tends to be white on longer timescales with high timing noise level that indicates an ongoing accretion process in between outburst episodes. For the second model, most of the red noise component is eliminated and the noise spectrum is found to be consistent with a white noise structure observed in wind-fed systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا