Do you want to publish a course? Click here

Muon-induced backgrounds in the CUORICINO experiment

134   0   0.0 ( 0 )
 Added by Laura Kogler
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

To better understand the contribution of cosmic ray muons to the CUORICINO background, 10 plastic scintillator detectors were installed at the CUORICINO site and operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV kg yr) (95% CL) was obtained on the cosmic ray-induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.



rate research

Read More

We propose to measure the rate Rd for muon capture on the deuteron to better than 1.5% precision. This process is the simplest weak interaction process on a nucleus that can both be calculated and measured to a high degree of precision. The measurement will provide a benchmark result, far more precise than any current experimental information on weak interaction processes in the two-nucleon system. Moreover, it can impact our understanding of fundamental reactions of astrophysical interest, like solar pp fusion and the $ u+d$ reactions observed by the Sudbury Neutrino Observatory. Recent effective field theory calculations have demonstrated, that all these reactions are related by one axial two-body current term, parameterized by a single low-energy constant. Muon capture on the deuteron is a clean and accurate way to determine this constant. Once it is known, the above mentioned astrophysical, as well as other important two-nucleon reactions, will be determined in a model independent way at the same precision as the measured muon capture reaction.
We report the final result of the CUORICINO experiment. Operated between 2003 and 2008, with a total exposure of 19.75 kg y of 130Te, CUORICINO was able to set a lower bound on the 130Te 0nDBD half-life of 2.8 10^{24} years at 90% C.L. The limit here reported includes the effects of systematic uncertainties that are examined in detail in the paper. The corresponding upper bound on the neutrino Majorana mass is in the range 300--710 meV, depending on the adopted nuclear matrix element evaluation.
We describe the data acquisition system for the MuLan muon lifetime experiment at Paul Scherrer Institute. The system was designed to record muon decays at rates up to 1 MHz and acquire data at rates up to 60 MB/sec. The system employed a parallel network of dual-processor machines and repeating acquisition cycles of deadtime-free time segments in order to reach the design goals. The system incorporated a versatile scheme for control and diagnostics and a custom web interface for monitoring experimental conditions.
128 - D.S. Akerib , H.M. Araujo , X. Bai 2014
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is $(2.6pm0.2_{textrm{stat}}pm0.4_{textrm{sys}})times10^{-3}$~events~keV$_{ee}^{-1}$~kg$^{-1}$~day$^{-1}$ in a 118~kg fiducial volume. The observed background rate is $(3.6pm0.4_{textrm{stat}})times10^{-3}$~events~keV$_{ee}^{-1}$~kg$^{-1}$~day$^{-1}$, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.
141 - Reina Maruyama 2008
Cryogenic bolometers, with their excellent energy resolution, flexibility in material, and availability in high purity, are excellent detectors for the search for neutrinoless double beta decay. Kilogram-size single crystals of TeO_2 are utilized in CUORICINO for an array with a total detector mass of 40.7 kg. CUORICINO currently sets the most stringent limit on the halflife of Te-130 of T > 2.4x10^{24} yr (90% C.L.), corresponding to a limit on the effective Majorana neutrino mass in the range of < 0.2-0.9 eV. Based on technology developed for CUORICINO and its predecessors, CUORE is a next-generation experiment designed to probe neutrino mass in the range of 10 - 100 meV. Latest results from CUORICINO and overview of the progress and current status of CUORE are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا