Do you want to publish a course? Click here

Data acquisition system for the MuLan muon lifetime experiment

151   0   0.0 ( 0 )
 Added by Tim Gorringe
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We describe the data acquisition system for the MuLan muon lifetime experiment at Paul Scherrer Institute. The system was designed to record muon decays at rates up to 1 MHz and acquire data at rates up to 60 MB/sec. The system employed a parallel network of dual-processor machines and repeating acquisition cycles of deadtime-free time segments in order to reach the design goals. The system incorporated a versatile scheme for control and diagnostics and a custom web interface for monitoring experimental conditions.



rate research

Read More

The part-per-million measurement of the positive muon lifetime and determination of the Fermi constant by the MuLan experiment at the Paul Scherrer Institute is reviewed. The experiment used an innovative, time-structured, surface muon beam and a near-4pi, finely-segmented, plastic scintillator positron detector. Two in-vacuum muon stopping targets were used: a ferromagnetic foil with a large internal magnetic field, and a quartz crystal in a moderate external magnetic field. The experiment obtained a muon lifetime 2 196 980.3(2.2) ps (1.0 ppm) and a Fermi constant 1.166 378 7(6) 10^-5 GeV^-2 (0.5 ppm). The thirty-fold improvement in the muon lifetime has proven valuable for precision measurements in nuclear muon capture and the commensurate improvement in the Fermi constant has proven valuable for precision tests of the standard model.
387 - T. P. Gorringe 2013
We report results from the MuLan measurement of the positive muon lifetime. The experiment was conducted at the Paul Scherrer Institute using a time-structured surface muon beam and a segmented plastic scintillator array. Two different in-vacuum muon stopping targets were used: a ferromagnetic foil with a large internal magnetic field and a quartz crystal in a moderate external magnetic field. From a total of 1.6 x 10^{12} decays, we obtained the muon lifetime tau_mu = 2196980.3(2.2) ps (1.0 ppm) and Fermi constant G_F = 1.1663787(6) x 10^{-5} GeV^{-2} (0.5 ppm).
144 - Peter Kammel 2003
We survey a new generation of precision muon lifetime experiments. The goal of the MuCap experiment is a determination of the rate for muon capture on the free proton to 1 percent, from which the induced pseudoscalar form factor $g_P$ of the nucleon can be derived with 7 percent precision. A measurement of the related $mu$d capture process with similar precision would provide unique information on the axial current in the two nucleon system, relevant for fundamental neutrino reactions on deuterium. The MuLan experiment aims to measure the positive muon lifetime with 20 fold improved precision compared to present knowledge in order to determine the Fermi Coupling Constant $G_F$ to better than 1 ppm.
We present a detailed report of the method, setup, analysis and results of a precision measurement of the positive muon lifetime. The experiment was conducted at the Paul Scherrer Institute using a time-structured, nearly 100%-polarized, surface muon beam and a segmented, fast-timing, plastic scintillator array. The measurement employed two target arrangements; a magnetized ferromagnetic target with a ~4 kG internal magnetic field and a crystal quartz target in a 130 G external magnetic field. Approximately 1.6 x 10^{12} positrons were accumulated and together the data yield a muon lifetime of tau_{mu}(MuLan) = 2196980.3(2.2) ps (1.0 ppm), thirty times more precise than previous generations of lifetime experiments. The lifetime measurement yields the most accurate value of the Fermi constant G_F (MuLan) = 1.1663787(6) x 10^{-5} GeV^{-2} (0.5 ppm). It also enables new precision studies of weak interactions via lifetime measurements of muonic atoms.
LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows for a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This paper describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا