Do you want to publish a course? Click here

Dual Gate Graphene FETs with fT of 50 GHz

183   0   0.0 ( 0 )
 Added by Yu-Ming Lin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A dual-gate graphene field-effect transistors is presented, which shows improved RF performance by reducing the access resistance using electrostatic doping. With a carrier mobility of 2700 cm2/Vs, a cutoff frequency of 50 GHz is demonstrated in a 350-nm gate length device. This fT value is the highest frequency reported to date for any graphene transistor, and it also exceeds that of Si MOSFETs at the same gate length, illustrating the potential of graphene for RF applications.

rate research

Read More

The electronic states at graphene-SiO$_2$ interface and their inhomogeneity was investigated using the back-gate-voltage dependence of local tunnel spectra acquired with a scanning tunneling microscope. The conductance spectra show two, or occasionally three, minima that evolve along the bias-voltage axis with the back gate voltage. This evolution is modeled using tip-gating and interface states. The energy dependent interface states density, $D_{it}(E)$, required to model the back-gate evolution of the minima, is found to have significant inhomogeneity in its energy-width. A broad $D_{it}(E)$ leads to an effect similar to a reduction in the Fermi velocity while the narrow $D_{it}(E)$ leads to the pinning of the Fermi energy close to the Dirac point, as observed in some places, due to enhanced screening of the gate electric field by the narrow $D_{it}(E)$
This letter reports the impact of surface morphology on the carrier transport and RF performance of graphene FETs formed on epitaxial graphene films synthesized on SiC substrates. Such graphene exhibits long terrace structures with widths between 3-5 {mu}m and steps of 10pm2 nm in height. While a carrier mobility above 3000 cm2/Vs at a carrier density of 1e12 cm-2 is obtained in a single graphene terrace domain at room temperature, the step edges can result in a vicinal step resistance of ~21 k{Omega}.{mu}m. By orienting the transistor layout so that the entire channel lies within a single graphene terrace, and reducing the access resistance associated with the ungated part of the channel, a cut-off frequency above 200 GHz is achieved for graphene FETs with channel lengths of 210 nm, which is the highest value reported on epitaxial graphene thus far.
126 - Y. Koseki , V. Ryzhii , T. Otsuji 2016
We study instability of plasmons in a dual-grating-gate graphene field-effect transistor induced by dc current injection using self-consistent simulations with the Boltzmann equation. With only the acoustic-phonon-limited electron scattering, it is demonstrated that a total growth rate of the plasmon instability, with the terahertz/mid-infrared range of the frequency, can exceed $4times10^{12}$ s$^{-1}$ at room temperature, which is an order of magnitude larger than in two-dimensional electron gases based on usual semiconductors. By Comparing the simulation results with existing theory, it is revealed that the giant total growth rate originates from simulataneous occurence of the so-called Dyakonov-Shur and Ryzhii-Satou-Shur instabilities.
We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 +- 340 Ohm-micrometer. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors.
Van der Waals heterostrucutures allow for novel devices such as two-dimensional-to-two-dimensional tunnel devices, exemplified by interlayer tunnel FETs. These devices employ channel/tunnel-barrier/channel geometries. However, during layer-by-layer exfoliation of these multi-layer materials, rotational misalignment is the norm and may substantially affect device characteristics. In this work, by using density functional theory methods, we consider a reduction in tunneling due to weakened coupling across the rotationally misaligned interface between the channel layers and the tunnel barrier. As a prototypical system, we simulate the effects of rotational misalignment of the tunnel barrier layer between aligned channel layers in a graphene/hBN/graphene system. We find that rotational misalignment between the channel layers and the tunnel barrier in this van der Waals heterostructure can significantly reduce coupling between the channels by reducing, specifically, coupling across the interface between the channels and the tunnel barrier. This weakened coupling in graphene/hBN/graphene with hBN misalignment may be relevant to all such van der Waals heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا