Do you want to publish a course? Click here

Thick-disk evolution induced by the growth of an embedded thin disk

130   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically-common 5:1 encounters between initially-thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale-length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale-height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale-lengths and scale-heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.



rate research

Read More

We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from textit{Gaia}/DR1, providing reliable age estimates with relative uncertainties of $pm1-2$ Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and a high-[Mg/Fe] sequence, which are often associated with the thick disk. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. The high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for both sequences, the high-[Mg/Fe] sequence has lower velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. Identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.
123 - D. Kawata 2016
This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Ways History: Spectroscopic Surveys, Asteroseismology and Chemodynamical models. The discussion focused on the following question: Are there distinct thick and thin disks?. The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besancon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.
We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 $pm$ 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be $1.6^{+0.3}_{-0.4}$ Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of $12.5^{+1.4}_{-3.4}$ Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.
In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in the disk, but the mechanism of gap formation is very different from the prograde case. Inward migration occurs on a timescale of t_ev ~ M_p/(dot M), where M_p is the mass of the less massive component (the perturber), and dot M is the accretion rate. When q<< 1, the accretion takes place mostly onto the more massive component, with the accretion rate onto the perturber being smaller than, or of order of, q^(1/3)M. However, this rate increases when supermassive binary black holes are considered and gravitational wave emission is important. We estimate a typical duration of time for which the accretion onto the perturber and gravitational waves could be detected.
146 - G. S. Stinson 2013
We analyse the structure and chemical enrichment of a Milky Way-like galaxy with a stellar mass of 2 10^{10} M_sun, formed in a cosmological hydrodynamical simulation. It is disk-dominated with a flat rotation curve, and has a disk scale length similar to the Milky Ways, but a velocity dispersion that is ~50% higher. Examining stars in narrow [Fe/H] and [alpha/Fe] abundance ranges, we find remarkable qualitative agreement between this simulation and observations: a) The old stars lie in a thickened distribution with a short scale length, while the young stars form a thinner disk, with scale lengths decreasing, as [Fe/H] increases. b) Consequently, there is a distinct outward metallicity gradient. c) Mono-abundance populations exist with a continuous distribution of scale heights (from thin to thick). However, the simulated galaxy has a distinct and substantive very thick disk (h_z~1.5 kpc), not seen in the Milky Way. The broad agreement between simulations and observations allows us to test the validity of observational proxies used in the literature: we find in the simulation that mono-abundance populations are good proxies for single age populations (<1 Gyr) for most abundances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا