Do you want to publish a course? Click here

The minor role of gas-rich major mergers in the rise of intermediate-mass early types at z <~ 1

121   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the evolution of galaxy structure since z ~ 1 to the present. From a GOODS-S multi-band catalog we define (blue) luminosity- and mass-weighted samples, limited by M_B <= -20 and M_star >= 10^10 M_Sun, comprising 1122 and 987 galaxies, respectively. We extract early-type (E/S0/Sa) and late-type (Sb-Irr) subsamples by their position in the concentration-asymmetry plane, in which galaxies exhibit a clear bimodality. We find that the early-type fraction, f_ET, rises with cosmic time, with a corresponding decrease in the late-type fraction, f_LT, in both luminosity- and mass-selected samples. However, the evolution of the comoving number density is very different: the decrease in the total number density of M_B <= -20 galaxies since z = 1 is due to the decrease in the late-type population, which accounts for ~75% of the total star-formation rate in the range under study, while the increase in the total number density of M_star >= 10^10 M_Sun galaxies in the same redshift range is due to the evolution of early types. This suggests that we need a structural transformation between late-type galaxies that form stars actively and early-type galaxies in which the stellar mass is located. Comparing the observed evolution with the gas-rich major merger rate in GOODS-S, we infer that only ~20% of the new early-type galaxies with M_star >= 10^10 M_Sun appeared since z ~ 1 can be explained by this kind of mergers, suggesting that minor mergers and secular processes may be the driving mechanisms of the structural evolution of intermediate-mass (M_star ~ 4x10^10 M_Sun) galaxies since z ~ 1.



rate research

Read More

Hierarchical models predict that massive early-type galaxies (mETGs) derive from the most massive and violent merging sequences occurred in the Universe. However, the role of wet, mixed, and dry major mergers in the assembly of mETGs is questioned by some recent observations. We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The model proves that it is feasible to reproduce the observed number density evolution of mETGs since z~1, just accounting for the coordinated effects of wet/mixed/dry major mergers. It can also reconcile the different assembly redshifts derived by hierarchical models and by mass downsizing data for mETGs, just considering that a mETG observed at a certain redshift is not necessarily in place since then. The model predicts that wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also played an essential role in it. The bulk of this assembly took place at 0.7<z<1, being nearly frozen at z<~0.7 due to the negligible number of major mergers occurred per existing mETG since then. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.
Hierarchical models predict that present-day massive early-type galaxies (mETGs) have finished their assembly at a quite late cosmic epoch (z~0.5), conflicting directly with galaxy mass-downsizing. In Eliche-Moral et al. (2010), we presented a semi-analytical model that predicts the increase by a factor of ~2.5 observed in the number density of mETGs since z~1 to the present, just accounting for the effects of the major mergers strictly-reported by observations. Here, we describe the relative, coordinated role of wet, mixed, and dry major mergers in driving this assembly. Accordingly to observations, the model predicts that: 1) wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also contributed significantly to it; 2) the bulk of this assembly takes place during the ~1.4 Gyr time-period elapsed at 0.7<z<1, being nearly frozen at z<~0.7; 3) this frostbite can be explained just accounting for the observational decrease of the major merger fraction since z~0.7, implying that major mergers (and, in particular, dry events) have contributed negligibly to the mETGs assembly during the last ~6.3 Gyr; and 4) major mergers are responsible for doubling the stellar mass at the massive-end of the red sequence since z~1. The most striking model prediction is that at least ~87% of the mETGs existing at z~1 are not the passively-evolved, high-z counterparts of present-day mETGs, but their gas-poor progenitors instead. This implies that <~5% of present-day mETGs have been really in place since z~1. The model derives a redshift of final assembly for present-day mETGs in agreement with hierarchical models (z~0.5), reproducing at the same time the observed buildup of mETGs at z<~1.(Abridged)
120 - Matt S. Owers 2010
New Chandra X-ray data and extensive optical spectroscopy, obtained with AAOmega on the 3.9 m Anglo-Australian Telescope, are used to study the complex merger taking place in the galaxy cluster Abell 2744. Combining our spectra with data from the literature provides a catalog of 1237 redshifts for extragalactic objects lying within 15 of the cluster center. From these, we confirm 343 cluster members projected within 3 Mpc of the cluster center. Combining positions and velocities, we identify two major substructures, corresponding to the remnants of two major subclusters. The new data are consistent with a post core passage, major merger taking place along an axis that is tilted well out of the plane of the sky, together with an interloping minor merger. Supporting this interpretation, the new X-ray data reveal enriched, low entropy gas from the core of the approaching, major subcluster, lying ~2 north of the cluster center, and a shock front to the southeast of the previously known bright, compact core associated with the receding subcluster. The X-ray morphology of the compact core is consistent with a Bullet-like cluster viewed from within ~45 degrees of the merger axis. An X-ray peak ~3 northwest of the cluster center, with an associated cold front to the northeast and a trail of low entropy gas to the south, is interpreted as the remnant of an interloping minor merger taking place roughly in the plane of the sky. We infer approximate paths for the three merging components.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSMOS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
142 - Jennifer M. Lotz 2011
Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, T_obs(z) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate T_obs(z) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G-M20, and (3) the morphology indicator asymmetry A. Then we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically-motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the range of mass-ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit co-moving volume for samples selected with constant number density evolves much more strongly with redshift (~ (1+z)^(+3.0 pm 1.1)) than samples selected with constant stellar mass or passively evolving luminosity (~ (1+z)^(+0.1 pm 0.4)). We calculate the minor merger rate (1:4 < M_{sat}/M_{primary} <~ 1:10) by subtracting the major merger rate from close pairs from the `total merger rate determined by G-M20. The implied minor merger rate is ~3 times the major merger rate at z ~ 0.7, and shows little evolution with redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا