No Arabic abstract
Do the SU(2) intertwiners parametrize the space of the EPRL solutions to the simplicity constraint? What is a complete form of the partition function written in terms of this parametrization? We prove that the EPRL map is injective for n-valent vertex in case when it is a map from SO(3) into SO(3)xSO(3) representations. We find, however, that the EPRL map is not isometric. In the consequence, in order to be written in a SU(2) amplitude form, the formula for the partition function has to be rederived. We do it and obtain a new, complete formula for the partition function. The result goes beyond the SU(2) spin-foam models framework.
The one-loop partition function of the $f(R,R_{mu u}R^{mu u})$ gravity theory is obtained around AdS$_4$ background. After suitable choice of the gauge condition and computation of the ghost determinant, we obtain the one-loop partition function of the theory. The traced heat kernel over the thermal quotient of AdS$_4$ space is also computed and the thermal partition function is obtained for this theory. We have then consider quantum corrections to the thermodynamical quantities in some special cases.
In this paper we prove injectivity of the EPRL map for |gamma|<1, filling the gap of our previous paper.
In this paper we have implemented quantum corrections for the Schwarzschild black hole metric using the generalized uncertainty principle (GUP) in order to investigate the scattering process. We mainly compute, at the low energy limit, the differential scattering and absorption cross section by using the partial wave method. We determine the phase shift analytically and verify that these quantities are modified by the GUP. We found that due to the quantum corrections from the GUP the absorption is not zero as the mass parameter goes to zero. A numerical analysis has also been performed for arbitrary frequencies.
We first give a way which satisfies the bidirectional derivation between the generalized uncertainty principle and the corrected entropy of black holes. By this way, the generalized uncertainty principle can be indirectly modified by some correction elements which are carrried by the corrected entropy. Then we put an entropy modified by quantum tunneling into the way, from which we get a new generalized uncertainty principle, and finally find the new one has a broader form and a stronger adaptability to the sign of parameter.
Using a description of the Levin-Wen model excitations in terms of Wilson lines, we compute the degeneracy of the energy levels for any input anyon theory and for any trivalent graph embedded on any (orientable) compact surface. This result allows one to obtain the finite-size and finite-temperature partition function and to show that there are no thermal phase transitions.