Do you want to publish a course? Click here

Study of Higgs self couplings of a supersymmetric $E_6$ model at the International Linear Collider

286   0   0.0 ( 0 )
 Added by Seung Woo Ham
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study the Higgs self couplings of a supersymmetric $E_6$ model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson, in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in $e^+e^-$ collisions at the International Linear Collider (ILC) via double Higgs-strahlung process. For the center of mass energy of 500 GeV with the integrated luminosity of 500 fb$^{-1}$ and the efficiency of 20 %, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via double Higgs-strahlung process.



rate research

Read More

501 - S. W. Ham 2008
It is found that CP symmetry may be explicitly broken in the Higgs sector of a supersymmetric $E_6$ model with two extra neutral gauge bosons at the one-loop level. The phenomenology of the model, the Higgs sector in particular, is studied for a reasonable parameter space of the model, in the presence of explicit CP violation at the one-loop level. At least one of the neutral Higgs bosons of the model might be produced via the $WW$ fusion process at the Large Hadron Collider.
157 - Felix Sefkow 2014
The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).
Measurement of the Higgs coupling to W-bosons is an important test of our understanding of the electroweak symmetry breaking mechanism. We study the sensitivity of the International Linear Collider (ILC) to the presence of anomalous HW+W- couplings using ZH -> nu nu WW* -> nu nu 4j events. Using an effective Lagrangian approach, we calculate the differential decay rates of the Higgs boson including the effects of new dimension-5 operators. We present a Monte Carlo simulation of events at the ILC, using a full detector simulation based on geant4 and a real event reconstruction chain. Expected constraints on the anomalous couplings are given.
The measurement of the Higgs coupling to W bosons is an important program at the international linear collider (ILC) to search for the anomaly in the coupling to the gauge bosons. We study the sensitivity of ILC to the Higgs anomalous coupling to W bosons by using ZH->vvWW* events. In this article, we report the status of the study.
We present an overview of the capabilities that the International Linear Collider (ILC) offers for precision measurements that probe the Standard Model. First, we discuss the improvements that the ILC will make in precision electroweak observables, both from W boson production and radiative return to the Z at 250 GeV in the center of mass and from a dedicated GigaZ stage of running at the Z pole. We then present new results on precision measurements of fermion pair production, including the production of b and t quarks. We update the ILC projections for the determination of Higgs boson couplings through a Standard Model Effective Field Theory fit taking into account the new information on precision electroweak constraints. Finally, we review the capabilities of the ILC to measure the Higgs boson self-coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا