Do you want to publish a course? Click here

Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube

527   0   0.0 ( 0 )
 Added by Nikolaos Tombros
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The charge transport properties of single superconducting tin nanowires, encapsulated by multiwalled carbon nanotubes have been investigated by multi-probe measurements. The multiwalled carbon nanotube protects the tin nanowire from oxidation and shape fragmentation and therefore allows us to investigate the electronic properties of stable wires with diameters as small as 25 nm. The transparency of the contact between the Ti/Au electrode and nanowire can be tuned by argonion etching the multiwalled nanotube. Application of a large electrical current results in local heating at the contact which in turn suppresses superconductivity.



rate research

Read More

115 - L. Langer , V. Bayot , E. Grivei 1995
We report on electrical resistance measurements of an individual carbon nanotube down to a temperature T=20 mK. The conductance exhibits a ln T dependence and saturates at low temperature. A magnetic field applied perpendicular to the tube axis, increases the conductance and produces aperiodic fluctuations. The data find a global and coherent interpretation in terms of two-dimensional weak localization and universal conductance fluctuations in mesoscopic conductors. The dimensionality of the electronic system is discussed in terms of the peculiar structure of carbon nanotubes.
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
Motivated by recent experiments searching for Majorana fermions (MFs) in hybrid semiconducting-superconducting nanostructures, we consider a realistic tight-binding model and analyze its transport behavior numerically. In particular, we take into account the presence of a superconducting contact, used in real experiments to extract the current, which is usually not included in theoretical calculations. We show that important features emerge that are absent in simpler models, such as the shift in energy of the proximity gap signal, and the enhanced visibility of the topological gap for increased spin-orbit interaction. We find oscillations of the zero bias peak as a function of the magnetic field and study them analytically. We argue that many of the experimentally observed features hint at an actual spin-orbit interaction larger than the one typically assumed. However, even taking into account all the known ingredients of the experiments and exploring many parameter regimes for MFs, we are not able to reach full agreement with the reported data. Thus, a different physical origin for the observed zero-bias peak cannot be excluded.
We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device (gatemon) is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {mu}s) and dephasing times (1 {mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
A top-gated single wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double and triple quantum dot stability diagrams. Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anti-crossings between indirectly coupled levels and higher order cotunneling are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا