No Arabic abstract
The goal of this work is to show that a ferromagnetic-like domain growth process takes place within the backbone of the three-dimensional $pm J$ Edwards-Anderson (EA) spin glass model. To sustain this affirmation we study the heterogeneities displayed in the out-of-equilibrium dynamics of the model. We show that both correlation function and mean flipping time distribution present features that have a direct relation with spatial heterogeneities, and that they can be characterized by the backbone structure. In order to gain intuition we analyze the pure ferromagnetic Ising model, where we show the presence of dynamical heterogeneities in the mean flipping time distribution that are directly associated to ferromagnetic growing domains. We extend a method devised to detect domain walls in the Ising model to carry out a similar analysis in the three-dimensional EA spin glass model. This allows us to show that there exists a domain growth process within the backbone of this model.
In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice (RL), consisting of the bonds that retain their frustration (or lack of it) in all ground states. In this work we have performed a detailed numerical study of the properties of the RL, both in two-dimensional (2D) and three-dimensional (3D) lattices. Whereas in 3D we find strong evidence for percolation in the thermodynamic limit, in 2D our results indicate that the most probable scenario is that the RL does not percolate. On the other hand, both in 2D and 3D we find that frustration is very unevenly distributed. Frustration is much lower in the RL than in its complement. Using equilibrium simulations we observe that this property can be found even above the critical temperature. This leads us to propose that the RL should share many properties of ferromagnetic models, an idea that recently has also been proposed in other contexts. We also suggest a preliminary generalization of the definition of backbone for systems with continuous distributions of bonds, and we argue that the study of this structure could be useful for a better understanding of the low temperature phase of those frustrated models.
We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, Stochastic Stability and Overlap Equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda-Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks
We study the $pm J$ three-dimensional Ising model with a longitudinal anisotropic bond randomness on the simple cubic lattice. The random exchange interaction is applied only in the $z$ direction, whereas in the other two directions, $xy$ - planes, we consider ferromagnetic exchange. By implementing an effective parallel tempering scheme, we outline the phase diagram of the model and compare it to the corresponding isotropic one, as well as to a previously studied anisotropic (transverse) case. We present a detailed finite-size scaling analysis of the ferromagnetic - paramagnetic and spin glass - paramagnetic transition lines, and we also discuss the ferromagnetic - spin glass transition regime. We conclude that the present model shares the same universality classes with the isotropic model, but at the symmetric point has a considerably higher transition temperature from the spin-glass state to the paramagnetic phase. Our data for the ferromagnetic - spin glass transition line are supporting a forward behavior in contrast to the reentrant behavior of the isotropic model.
Domain-wall free-energy $delta F$, entropy $delta S$, and the correlation function, $C_{rm temp}$, of $delta F$ are measured independently in the four-dimensional $pm J$ Edwards-Anderson (EA) Ising spin glass. The stiffness exponent $theta$, the fractal dimension of domain walls $d_{rm s}$ and the chaos exponent $zeta$ are extracted from the finite-size scaling analysis of $delta F$, $delta S$ and $C_{rm temp}$ respectively well inside the spin-glass phase. The three exponents are confirmed to satisfy the scaling relation $zeta=d_{rm s}/2-theta$ derived by the droplet theory within our numerical accuracy. We also study bond chaos induced by random variation of bonds, and find that the bond and temperature perturbations yield the universal chaos effects described by a common scaling function and the chaos exponent. These results strongly support the appropriateness of the droplet theory for the description of chaos effect in the EA Ising spin glasses.
The stability of the spin-glass phase against a magnetic field is studied in the three and four dimensional Edwards-Anderson Ising spin glasses. Effective couplings and effective fields associated with length scale L are measured by a numerical domain-wall renormalization group method. The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of H which diverges as H goes to zero but remains finite for any non-zero H, implying that the spin-glass phase is absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-range spin glasses.