No Arabic abstract
From high-resolution images of 23 Seyfert-1 galaxies at z=0.36 and z=0.57 obtained with the Near Infrared Camera and Multi-Object Spectrometer on board the Hubble Space Telescope (HST), we determine host-galaxy morphology, nuclear luminosity, total host-galaxy luminosity and spheroid luminosity. Keck spectroscopy is used to estimate black hole mass (M_BH). We study the cosmic evolution of the M_BH-spheroid luminosity (L_sph) relation. In combination with our previous work, totaling 40 Seyfert-1 galaxies, the covered range in BH mass is substantially increased, allowing us to determine for the first time intrinsic scatter and correct evolutionary trends for selection effects. We re-analyze archival HST images of 19 local reverberation-mapped active galaxies to match the procedure adopted at intermediate redshift. Correcting spheroid luminosity for passive luminosity evolution and taking into account selection effects, we determine that at fixed present-day V-band spheroid luminosity, M_BH/L_sph propto (1+z)^(2.8+/-1.2). When including a sample of 44 quasars out to z=4.5 taken from the literature, with luminosity and BH mass corrected to a self-consistent calibration, we extend the BH mass range to over two orders of magnitude, resulting in M_BH/L_sph propto (1+z)^(1.4+/-0.2). The intrinsic scatter of the relation, assumed constant with redshift, is 0.3+/-0.1 dex (<0.6 dex at 95% CL). The evolutionary trend suggests that BH growth precedes spheroid assembly. Interestingly, the M_BH-total host-galaxy luminosity relation is apparently non-evolving. It hints at either a more fundamental relation or that the spheroid grows by a redistribution of stars. However, the high-z sample does not follow this relation, indicating that major mergers may play the dominant role in growing spheroids above z~1.
We combine Hubble Space Telescope images of a sample of 20 Seyfert galaxies at z=0.36 with spectroscopic information from the Keck Telescope to determine the black hole mass - spheroid luminosity relation (M-L), the Fundamental Plane (FP) of the host galaxies and the M-sigma relation. Assuming pure luminosity evolution, we find that the host spheroids had smaller luminosity and stellar velocity dispersion than today for a fixed M. The offsets correspond to Delta log L_B,0=0.40+-0.11+-0.15 (Delta log M = 0.51+-0.14+-0.19) and Delta log sigma = 0.13+-0.03+-0.05 (Delta log M = 0.54+-0.12+-0.21), respectively for the M-L and M-sigma relation. A detailed analysis of known systematic errors and selection effects shows that they cannot account for the observed offset. The data are inconsistent with pure luminosity evolution and the existence of universal and tight scaling relations. To obey the three local scaling relations by z=0 the distant spheroids have to grow their stellar mass by approximately 60% (Delta log M_sph=0.20+-0.14) in the next 4 billion years. The measured evolution can be expressed as M/ M_sph ~ (1+z)^{1.5+-1.0}. Based on the disturbed morphologies of a fraction of the sample (6/20) we suggest collisional mergers with disk-dominated systems as evolutionary mechanism.
We build an evolution model of the central black hole that depends on the processes of gas accretion, the capture of stars, mergers as well as electromagnetic torque. In case of gas accretion in the presence of cooling sources, the flow is momentum-driven, after which the black hole reaches a saturated mass; subsequently, it grows only by stellar capture and mergers. We model the evolution of the mass and spin with the initial seed mass and spin in $Lambda$CDM cosmology. For stellar capture, we have assumed a power-law density profile for the stellar cusp in a framework of relativistic loss cone theory that include the effects of black hole spin, Carters constant, loss cone angular momentum, and capture radius. Based on this, the predicted capture rates of $10^{-5}$--$10^{-6}$ yr$^{-1}$ are closer to the observed range. We have considered the merger activity to be effective for $z lesssim 4$, and we self-consistently include the Blandford-Znajek torque. We calculate these effects on the black hole growth individually and in combination, for deriving the evolution. Before saturation, accretion dominates the black hole growth ($sim 95%$ of the final mass), and subsequently, stellar capture and mergers take over with roughly equal contribution. The simulations of the evolution of the $M_{bullet} - sigma$ relation using these effects are consistent with available observations. We run our model backward in time and retrodict the parameters at formation. Our model will provide useful inputs for building demographics of the black holes and in formation scenarios involving stellar capture.
From two very simple axioms: (1) that AGN activity traces spheroid formation, and (2) that the cosmic star-formation history is dominated by spheroid formation at high redshift, we derive simple expressions for the star-formation histories of spheroids and discs, and their implied metal enrichment histories. Adopting a Baldry-Glazebrook initial mass function we use these relations and apply PEGASE.2 to predict the z=0 cosmic spectral energy distributions (CSEDs) of spheroids and discs. The model predictions compare favourably to the dust-corrected CSED recently reported by the Galaxy And Mass Assembly (GAMA) team from the FUV through to the K band. The model also provides a reasonable fit to the total stellar mass contained within spheroid and disc structures as recently reported by the Millennium Galaxy Catalogue team. Three interesting inferences can be made following our axioms: (1) there is a transition redshift at z ~ 1.7 at which point the Universe switches from what we refer to as hot mode evolution (i.e., spheroid formation/growth via mergers and/or collapse) to what we term cold mode evolution (i.e., disc formation/growth via gas infall and minor mergers); (2) there is little or no need for any pre-enrichment prior to the main phase of star-formation; (3) in the present Universe mass-loss is fairly evenly balanced with star-formation holding the integrated stellar mass density close to a constant value. The model provides a simple prediction of the energy output from spheroid and disc projenitors, the build-up of spheroid and disc mass, and the mean metallicity enrichment of the Universe.
I very briefly discuss the ages and kinematics of spheroids as well as the black hole relations, via a few recent and illustrative studies, which include results on the downsizing, scaling laws, angular momentum and central massive objects.
Strongly lensed active galactic nuclei (AGN) provide a unique opportunity to make progress in the study of the evolution of the correlation between the mass of supermassive black holes ($mathcal M_{BH}$) and their host galaxy luminosity ($L_{host}$). We demonstrate the power of lensing by analyzing two systems for which state-of-the-art lens modelling techniques have been applied to Hubble Space Telescope imaging data. We use i) the reconstructed images to infer the total and bulge luminosity of the host and ii) published broad-line spectroscopy to estimate $mathcal M_{BH}$ using the so-called virial method. We then enlarge our sample with new calibration of previously published measurements to study the evolution of the correlation out to z~4.5. Consistent with previous work, we find that without taking into account passive luminosity evolution, the data points lie on the local relation. Once passive luminosity evolution is taken into account, we find that BHs in the more distant Universe reside in less luminous galaxies than today. Fitting this offset as $mathcal M_{BH}$/$L_{host}$ $propto$ (1+z)$^{gamma}$, and taking into account selection effects, we obtain $gamma$ = 0.6 $pm$ 0.1 and 0.8$pm$ 0.1 for the case of $mathcal M_{BH}$-$L_{bulge}$ and $mathcal M_{BH}$-$L_{total}$, respectively. To test for systematic uncertainties and selection effects we also consider a reduced sample that is homogeneous in data quality. We find consistent results but with considerably larger uncertainty due to the more limited sample size and redshift coverage ($gamma$ = 0.7 $pm$ 0.4 and 0.2$pm$ 0.5 for $mathcal M_{BH}$-$L_{bulge}$ and $mathcal M_{BH}$-$L_{total}$, respectively), highlighting the need to gather more high-quality data for high-redshift lensed quasar hosts. Our result is consistent with a scenario where the growth of the black hole predates that of the host galaxy.