Do you want to publish a course? Click here

Cross sections of the $ppto K^+Sigma^+n$ reaction close to threshold

201   0   0.0 ( 0 )
 Added by Hartmut Machner
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The paper is obsolete



rate research

Read More

Differential cross sections for the reaction $gamma p to K^{*0} Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The kstar was detected by its decay products, $K^+pi^-$, in the CLAS detector at Jefferson Lab. These data are the first kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the models two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $kappa$ meson exchange in $t$-channel diagrams should be investigated.
We present results of an exclusive measurement of the first excited state of the Sigma hyperon, Sigma(1385)^+, produced in p+p -> Sigma^+ + K^+ + n at 3.5 GeV beam energy. The extracted data allow to study in detail the invariant mass distribution of the Sigma(1385)^+. The mass distribution is well described by a relativistic Breit-Wigner function with a maximum at m_0 = 1383.2 +- 0.9 MeV/c^2 and a width of 40.2 +- 2.1 MeV/c^2. The exclusive production cross-section comes out to be 22.27 +- 0.89 +- 1.56 +3.07 -2.10 mu b. Angular distributions of the Sigma(1385)^+ in different reference frames are found to be compatible with the hypothesis that 33 % of Sigma(1385)^+ result from the decay of an intermediate Delta^{++} resonance.
The reaction pp -> dpi+eta has been measured at a beam energy of T=2.65 GeV (p=3.46 GeV/c) using the ANKE spectrometer at COSY-Juelich. The missing mass distribution of the detected dpi+ pairs exhibits a peak around the eta mass on top of a strong background of multi-pion pp -> dpi+(n(pi)) events. The differential cross section d^4(sigma)/d(Omega_d)d(Omega_pi+)d(p_d)d(p_pi+) for the reaction pp -> dpi+eta has been determined model independently for two regions of phase space. Employing a dynamical model for the a0+ production allows one then to deduce a total cross section of sigma(pp -> da0+ -> dpi+eta)=(1.1 +/- 0.3_(stat) +/- 0.7_(syst)) microbarn for the production of pi+eta via the scalar a0+(980) resonance and sigma(pp -> dpi+eta) = (3.5 +/- 0.3_(stat) +/- 1.0_(syst)) microbarn for the non-resonant production. Using the same model as for the interpretation of recent results from ANKE for the reaction pp -> dK+(bar(K0)), the ratio of the total cross sections is sigma(pp -> d(K+(bar(K0)))_(L=0))/sigma(pp -> da0+ -> dpi+eta) = 0.029 +/- 0.008_(stat) +/- 0.009_(syst), which is in agreement with branching ratios in the literature.
The appearance of some papers dealing with the $K^- d to pi Sigma n$ reaction, with some discrepancies in the results and a proposal to measure the reaction at forward $n$ angles at J-PARC justifies to retake the theoretical study with high precision to make accurate predictions for the experiment and extract from there the relevant physical information. We do this in the present paper showing results using the Watson approach and the truncated Faddeev approach. We argue that the Watson approach is more suitable to study the reaction because it takes into account the potential energy of the nucleons forming the deuteron, which is neglected in the truncated Faddeev approach. Predictions for the experiment are done as well as spectra with the integrated neutron angle.
147 - A.Dzyuba , V.Kleber , M.Buescher 2006
The reaction pp -> d K^+ K^0-bar has been investigated at excess energies Q = 47.4 and 104.7 MeV above the K^+ K^0-bar threshold at COSY-Juelich. Coincident dK^+ pairs were detected with the ANKE spectrometer, and events with a missing K^0-bar invariant-mass subsequently identified. The joint analysis of invariant-mass and angular distributions reveals s-wave dominance between the two kaons, in conjunction with a p-wave between the deuteron and the kaon pair, i.e. K K-bar production via the a_0^+(980) channel. Integration of the differential distributions yields total cross sections of sigma(pp -> d K^+ K^0-bar) = (38 +/- 2(stat) +/- 14(syst)) nb and 190 +/- 4(stat) +/- 39(syst)) nb for the low and high Q values, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا