No Arabic abstract
The observed spectral variation of HD 50138 has led different authors to classify it in a very wide range of spectral types and luminosity classes (from B5 to A0 and III to Ia) and at different evolutionary stages as either HAeBe star or classical Be. Aims: Based on new high-resolution optical spectroscopic data from 1999 and 2007 associated to a photometric analysis, the aim of this work is to provide a deep spectroscopic description and a new set of parameters for this unclassified southern B[e] star and its interstellar extinction. Methods: From our high-resolution optical spectroscopic data separated by 8 years, we perform a detailed spectral description, presenting the variations seen and discussing their possible origin. We derive the interstellar extinction to HD 50138 by taking the influences of the circumstellar matter in the form of dust and an ionized disk into account. Based on photometric data from the literature and the new Hipparcos distance, we obtain a revised set of parameters for HD 50138. Results: Because of the spectral changes, we tentatively suggest that a new shell phase could have taken place prior to our observations in 2007. We find a color excess value of E(B-V) = 0.08 mag, and from the photometric analysis, we suggest that HD 50138 is a B6-7 III-V star. A discussion of the different evolutionary scenarios is also provided.
HD 50138 is a southern star that presents the B[e] phenomenon, but its evolutionary stage is still not well known. This object presents spectral variability, which can be explained by outbursts or shell phases and spectropolarimetric observations have shown the presence of a non-spherically symmetric circumstellar environment that is responsible for the B[e] phenomenon. Based on recent optical long baseline interferometric observations from the VLTI/MIDI and VLTI/AMBER, and also from the Keck segment-tilting experiment, we study the structure of the circumstellar environment of HD 50138, through a geometrical analytical modeling, also using the recent LITpro software and considering a large space of parameters. We resolve and describe its circumstellar geometry for the first time in detail. The presence of a dusty circumstellar disk with an orientation onto the sky-plane of 71+-7 degrees, which is perpendicular to the polarimetric measurements from the literature, was derived. We also derived that HD 50138 is seen under an intermediate angle related to the line of sight, 56+-4 degrees. In addition, the structure of the disk and the flux contributions of the gas and dust components is discussed.
HD 50138 presents the B[e] phenomenon, but its nature is not clear yet. This star is known to present spectral variations, which have been associated with outbursts and shell phases. We analyze the line profile variability of HD 50138 and its possible origin, which provide possible hints to its evolutionary stage, so far said to be close to the end of (or slightly beyond) the main sequence. New high-resolution spectra of HD 50138 obtained with the HERMES spectrograph over several nights (five of them consecutively) were analyzed, allowing us to confirm short-term line profile variability. Our new data show short-term variations in the photospheric lines. On the other hand, purely circumstellar lines (such as [O I] lines) do not show such rapid variability. The rotational velocity of HD 50138, V_rot = 90.3 +- 4.3 km/s, and the rotation period, P = 3.64 +- 1.16 d, were derived from the He II 4026A photospheric line. Based on the moment method, we confirm that the origin of this short-term line profile variability is not stellar spots, and it may be caused by pulsations. In addition, we show that macroturbulence may affect the profiles of photospheric lines, as is seen for B supergiants. The location of HD 50138 at the end of (or slightly beyond) the main sequence, the newly detected presence of line profile variability resembling pulsating stars, and macroturbulence make this star a fascinating object.
HD 50138 is a B[e] star surrounded by a large amount of circumstellar gas and dust. Its spectrum shows characteristics which may indicate either a pre- or a post-main-sequence system. Mapping the kinematics of the gas in the inner few au of the system contributes to a better understanding of its physical nature. We present the first high spatial and spectral resolution interferometric observations of the Br-gamma line of HD~50138, obtained with VLTI/AMBER. The line emission originates from a region more compact (up to 3 au) than the continuum-emitting region. Blue- and red-shifted emission originates from the two different hemispheres of an elongated structure perpendicular to the polarization angle. The velocity of the emitting medium decreases radially. An overall offset along the NW direction between the line- and continuum-emitting regions is observed. We compare the data with a geometric model of a thin Keplerian disk and a spherical halo on top of a Gaussian continuum. Most of the data are well reproduced by this model, except for the variability, the global offset and the visibility at the systemic velocity. The evolutionary state of the system is discussed; most diagnostics are ambiguous and may point either to a post-main-sequence or a pre-main-sequence nature.
HH 50138 is one of the brightest B[e] stars at a distance of $sim$ 380 pc with strong infrared excess. The star was observed in [O I] 63 $mu$m and [C II] 158 $mu$m with high velocity resolution with upGREAT on SOFIA. The velocity resolved [O I] emission provides evidence for a large gas-disk, $sim$ 760 au in size, around HD 50138. Whereas previous interferometric observations give strong evidence for a hot gas and dust disk in Keplerian rotation, our bservations are the first to provide unambiguous evidence for a large warm disk around the star. Herschel/PACS observations showed that the [C II] emission is extended, therefore the [C II] emission most likely originates in an ionized gas shell created by a past outflow event. We confirm the isolated nature of HD 50138. It is far from any star forming region and has low proper motion. Neither is there any sign of a remnant cloud from which it could have formed. The extended disk around the star appears carbon poor. It shows OH and [O I] emission, but no CO. The CO abundance appears to be at least an order of magnitude lower than that of OH. Furthermore $^{13}$CO is enriched by more than a factor of five, confirming that the star is not a Herbig Be star. Finally we note that our high spectral resolution [O I] and [C II] observations provide a very accurate heliocentric velocity of the star, 40.8 $pm$ 0.2 km~s$^{-1}$.
We analyse spectroscopic observations of the B[e] star HD 50138 (MWC 158, V743 Mon, or IRAS 06491-0654), a member of the FS CMa group, obtained over the last twenty years. Four different epochs are identified in the observational data, where the variability of the spectral features is substantially different. Additionally, two long periods of (3 000 +/- 500) and (5 000 +/- 1000) days are found in the variations of the equivalent widths of the H alpha and [OI] 6300 A lines and radial velocities of the H alpha line violet peak. Modest signatures of a regular period of ~34 days in the radial velocities of the H alpha red peak and H beta central depression are found in the season 2013/2014. The H alpha V/R changes indicate a periodicity of ~50 days. The correlations between individual spectral features significantly restricts the model of the object and suggest that it is most likely a binary system with a highly distorted disc with spiral arms around the primary component. At the same time, no obvious signs of the secondary component has been found in the objects spectrum.