Do you want to publish a course? Click here

Dark matter response to galaxy formation

259   0   0.0 ( 0 )
 Added by Patricia B. Tissera
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have resimulated the six galaxy-sized haloes of the Aquarius Project including metal-dependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this response is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with $ beta approx 0.1-02$, while others retain the anisotropy structure of their baryon-fre



rate research

Read More

We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass $m_{ u}$ and mixing parameter $sin^2(2theta)$ with active neutrinos, we focus on models with $m_{ u}=7$ keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with $sin^2(2theta)=5,10^{-11}$ and $sin^2(2theta)=2,10^{-10}$, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass $m_X=3$ keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at $zgtrsim 6$, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.
146 - Joel R. Primack 2009
The four lectures that I gave in the XIII Ciclo de Cursos Especiais at the National Observatory of Brazil in Rio in October 2008 were (1) a brief history of dark matter and structure formation in a LambdaCDM universe; (2) challenges to LambdaCDM on small scales: satellites, cusps, and disks; (3) data on galaxy evolution and clustering compared with simulations; and (4) semi-analytic models. These lectures, themselves summaries of much work by many people, are summarized here briefly.
We use the Copernicus Complexio (COCO) high resolution $N$-body simulations to investigate differences in the properties of small-scale structures in the standard cold dark matter (CDM) model and in a model with a cutoff in the initial power spectrum of density fluctuations consistent with both a thermally produced warm dark matter (WDM) particle or a sterile neutrino with mass 7 keV and leptogenesis parameter $L_6=8.7$. The latter corresponds to the coldest model with this sterile neutrino mass compatible with the identification of the recently detected 3.5 keV X-ray line as resulting from particle decay. CDM and WDM predict very different number densities of subhaloes with mass $leq 10^9,h^{-1},M_odot$ although they predict similar, nearly universal, normalised subhalo radial density distributions. Haloes and subhaloes in both models have cuspy NFW profiles, but WDM subhaloes below the cutoff scale in the power spectrum (corresponding to maximum circular velocities $V_{mathrm{max}}^{z=0} leq50~mathrm{kms}^{-1}$) are less concentrated than their CDM counterparts. We make predictions for observable properties using the GALFORM semi-analytic model of galaxy formation. Both models predict Milky Way satellite luminosity functions consistent with observations, although the WDM model predicts fewer very faint satellites. This model, however, predicts slightly more UV bright galaxies at redshift $z>7$ than CDM, but both are consistent with observations. Gravitational lensing offers the best prospect of distinguishing between the models.
76 - Mark R.Lovell 2015
The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, $L_6$, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than $2times10^{12}M_{odot}$ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of $L_6$ for $M_sle 8$~keV. We also show that the range of $L_6$ that is in best agreement with the 3.5~keV line (if produced by decays of 7~keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than $1.5times10^{12}M_{odot}$. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel~et~al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.
Over a handful of rotation periods, dynamical processes in barred galaxies induce non-axisymmetric structure in dark matter halos. Using n-body simulations of a Milky Way-like barred galaxy, we identify both a trapped dark-matter component, a shadow bar, and a strong response wake in the dark-matter distribution that affects the predicted dark-matter detection rates for current experiments. The presence of a baryonic disk together with well-known dynamical processes (e.g. spiral structure and bar instabilities) increase the dark matter density in the disk plane. We find that the magnitude of the combined stellar and shadow bar evolution, when isolated from the effect of the axisymmetric gravitational potential of the disk, accounts for >30% of this overall increase in disk-plane density. This is significantly larger that of previously claimed deviations from the standard halo model. The dark-matter density and kinematic wakes driven by the Milky Way bar increase the detectability of dark matter overall, especially for the experiments with higher $v_{min}$. These astrophysical features increase the detection rate by more than a factor of two when compared to the standard halo model and by a factor of ten for experiments with high minimum recoil energy thresholds. These same features increase (decrease) the annual modulation for low (high) minimum recoil energy experiments. We present physical arguments for why these dynamics are generic for barred galaxies such as the Milky Way rather than contingent on a specific galaxy model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا