Do you want to publish a course? Click here

The Morphology of Passively Evolving Galaxies at z ~ 2 from HST/WFC3 Deep Imaging in the Hubble Ultradeep Field

126   0   0.0 ( 0 )
 Added by Paolo Cassata
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present near-IR images, obtained with the Hubble Space Telescope (HST) and the WFC3/IR camera, of six passive and massive galaxies at redshift 1.3<z<2.4 (SSFR<10^{-2} Gyr^{-1}; stellar mass M~10^{11} M_{sun}), selected from the Great Observatories Origins Deep Survey (GOODS). These images, which have a spatial resolution of ~1.5 kpc, provide the deepest view of the optical rest-frame morphology of such systems to date. We find that the light profile of these galaxies is regular and well described by a Sersic model with index typical of todays spheroids. Their size, however, is generally much smaller than todays early types of similar stellar mass, with four out of six galaxies having r_e ~ 1 kpc or less, in quantitative agreement with previous similar measures made at rest-frame UV wavelengths. The images reach limiting surface brightness mu~26.5 mag arcsec^{-2} in the F160W bandpass; yet, there is no evidence of a faint halo in the galaxies of our sample, even in their stacked image. We also find that these galaxies have very weak morphological k-correction between the rest-frame UV (from the ACS z-band), and the rest--frame optical (WFC3 H-band): the Sersic index, physical size and overall morphology are independent or only mildly dependent on the wavelength, within the errors.



rate research

Read More

152 - Yicheng Guo 2011
We report the detection of color gradients in six massive (stellar mass > 10^{10} M_{sun}) and passively evolving (specific SFR < 10^{-11}/yr) galaxies at redshift 1.3<z<2.5 identified in the HUDF using HST ACS and WFC3/IR images. After matching different PSFs, we obtain color maps and multi-band optical/near-IR photometry (BVizYJH) in concentric annuli, from the smallest resolved radial (~1.7 kpc) up to several times the H-band effective radius. We find that the inner regions of these galaxies have redder rest-frame UV--optical colors than the outer parts. The slopes of the color gradients mildly depend on the overall dust obscuration and rest-frame (U-V) color, with more obscured or redder galaxies having steeper color gradients. The z~2 color gradients are also steeper than those of local early-types. The gradient of a single parameter (age, extinction or metallicity) cannot fully explain the observed color gradients. Fitting spatially resolved HST seven-band photometry to stellar population synthesis models, we find that, regardless of assumptions for metallicity gradient, the redder inner regions of the galaxies have slightly higher dust obscuration than the bluer outer regions, although the magnitude depends on the assumed extinction law. The derived age gradient depends on the assumptions for metallicity gradient. We discuss the implications of a number of assumptions for metallicity gradient on the formation and evolution of these galaxies. We find that the evolution of the mass--size relationship from z~2 to z~0 cannot be driven by in--situ extended star formation, implying that accretion or merger is mostly responsible for the evolution. The lack of a correlation between color gradient and stellar mass argues against the metallicity gradient predicted by the monolithic collapse, which would require significant major mergers to evolve into the one observed at z~0. (Abridged)
We report on a complete sample of 7 luminous early-type galaxies in the Hubble Ultra Deep Field (UDF) with spectroscopic redshifts between 1.39 and 2.47 and to K<23 AB. Using the BzK selection criterion we have pre-selected a set of objects over the UDF which fulfill the photometric conditions for being passively evolving galaxies at z>1.4. Low-resolution spectra of these objects have been extracted from the HST+ACS grism data taken over the UDF by the GRAPES project. Redshift for the 7 galaxies have been identified based on the UV feature at rest frame 2640<lambda<2850 AA. This feature is mainly due to a combination of FeII, MgI and MgII absorptions which are characteristic of stellar populations dominated by stars older than about 0.5 Gyr. The redshift identification and the passively evolving nature of these galaxies is further supported by the photometric redshifts and by the overall spectral energy distribution (SED), with the ultradeep HST+ACS/NICMOS imaging revealing compact morphologies typical of elliptical/early-type galaxies. From the SED we derive stellar masses of 10^{11}Msun or larger and ages of about 1 Gyr. Their space density at < z >=1.7 appears to be roughly a factor of 2--3 smaller than that of their local counterparts, further supporting the notion that such massive and old galaxies are already ubiquitous at early cosmic times. Much smaller effective radii are derived for some of the objects compared to local massive ellipticals, which may be due to morphological K corrections, evolution, or the presence of a central point-like source. Nuclear activity is indeed present in a subset of the galaxies, as revealed by them being hard X-ray sources, hinting to AGN activity having played a role in discontinuing star formation.
[Abridged] We present the results of new near-IR spectroscopic observations of passive galaxies at z>1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in absorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample almost complete to K(AB)=21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of ~0.05; however, ~30% of objects have photometric redshifts systematically underestimated by up to ~25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z=1.43, 1.53, 1.67 and 1.82, with this latter one including 7 galaxies. SED fits to broad-band fluxes indicate stellar masses in the range of ~4-40x10^10Msun and that star formation was quenched ~1 Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their Hdelta_F and Dn4000 indices, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the coaddition of 17 individual spectra. The effective radii of the galaxies have been measured on the HST/ACS F814W image, confirming the coexistence at these redshifts of passive galaxies which are substantially more compact than their local counterparts with others that follow the local size-stellar mass relation. For the galaxy with best S/N spectrum we were able to measure a velocity dispersion of 270+/-105 km/s, indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius.
362 - Andrew Bunker 2009
We have searched for star-forming galaxies at z~7 by applying the Lyman-break technique to newly-released 1.1micron Y-band images from WFC3 on HST. By comparing these images of the Hubble Ultra Deep Field with the ACS z-band (0.85micron), we identify objects with red colours, (z-Y)_AB>1.3), consistent with the Ly-alpha forest absorption at z~6.7-8.8. We identify 12 of these z-drops down to a limiting magnitude Y_AB<28.5 (equivalent to a star formation rate of 1.3M_sun/yr at z=7.1), which are undetected in the other ACS filters. We use the WFC3 J-band image to eliminate contaminant low mass Galactic stars, which typically have redder colours than z~7 galaxies. One of our z-drops is a probably a T-dwarf star. The z~7 z-drops have much bluer spectral slopes than Lyman-break galaxies at lower redshift. Our brightest z-drop is not present in the NICMOS J-band image of the same field taken 5 years before, and is a possible transient object. From the 10 remaining z~7 candidates we determine a lower limit on the star formation rate density of 0.0017M_sun/yr/Mpc^3 for a Salpeter initial mass function, which rises to 0.0025-0.0034M_sun/yr/Mpc^3 after correction for luminosity bias. The star formation rate density is a factor of ~10 less than that at z=3-4, and is about half the value at z~6. While based on a single deep field, our results suggest that this star formation rate density would produce insufficient Lyman continuum photons to reionize the Universe unless the escape fraction of these photons is extremely high (f_esc>0.5), and the clumping factor of the Universe is low. Even then, we need to invoke a large contribution from galaxies below our detection limit. The apparent shortfall in ionizing photons might be alleviated if stellar populations at high redshift are low metallicity or have a top-heavy IMF.
We present the results of a systematic search for galaxies in the redshift range z = 6 - 9, within the new, deep, near-infrared imaging of the Hubble Ultra Deep Field provided by the Wide Field Camera 3 (WFC3) on HST. We have performed full SED fitting to the optical+infrared photometry of all high-redshift galaxy candidates detected at greater than 5-sigma in at least one of the WFC3/IR broad-band filters. After rejection of contaminants, the result is a sample of 49 galaxies with primary redshift solutions z > 5.9. Our sample, selected without recourse to specific colour cuts, re-selects all but the faintest one of the 16 z-drops selected by Oesch et al. (2009), recovers all 5 of the Y-drops reported by Bouwens et al. (2009), and adds a further 29 galaxy candidates, of which 12 lie beyond z = 6.3, and 4 lie beyond z = 7. We also present confidence intervals on our photometric redshift estimates, and caution that acceptable low-redshift (z < 2) solutions exist for 28 out of the 37 galaxies at z > 6.3, and for all 8 galaxy candidates at z > 7.5. Nevertheless, the very highest redshift candidates appear to be strongly clustered in the field. We derive new estimates of the ultraviolet galaxy luminosity function at z = 7 and z = 8. Where our results are most robust, at a characteristic luminosity M(1500) ~ -19.5 (AB), we find that the comoving number density of galaxies declines by a factor of ~ 2.5 between z = 6 and z = 7, and by a further factor of ~ 2 by z = 8. These results suggest that it is difficult for the observed population of high-redshift star-forming galaxies to achieve reionisation by z ~ 6 without a significant contribution from galaxies well below the detection limits, plus alterations in the escape fraction of ionising photons and/or continued vigorous star formation at z > 15.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا