Do you want to publish a course? Click here

Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF

149   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a systematic search for galaxies in the redshift range z = 6 - 9, within the new, deep, near-infrared imaging of the Hubble Ultra Deep Field provided by the Wide Field Camera 3 (WFC3) on HST. We have performed full SED fitting to the optical+infrared photometry of all high-redshift galaxy candidates detected at greater than 5-sigma in at least one of the WFC3/IR broad-band filters. After rejection of contaminants, the result is a sample of 49 galaxies with primary redshift solutions z > 5.9. Our sample, selected without recourse to specific colour cuts, re-selects all but the faintest one of the 16 z-drops selected by Oesch et al. (2009), recovers all 5 of the Y-drops reported by Bouwens et al. (2009), and adds a further 29 galaxy candidates, of which 12 lie beyond z = 6.3, and 4 lie beyond z = 7. We also present confidence intervals on our photometric redshift estimates, and caution that acceptable low-redshift (z < 2) solutions exist for 28 out of the 37 galaxies at z > 6.3, and for all 8 galaxy candidates at z > 7.5. Nevertheless, the very highest redshift candidates appear to be strongly clustered in the field. We derive new estimates of the ultraviolet galaxy luminosity function at z = 7 and z = 8. Where our results are most robust, at a characteristic luminosity M(1500) ~ -19.5 (AB), we find that the comoving number density of galaxies declines by a factor of ~ 2.5 between z = 6 and z = 7, and by a further factor of ~ 2 by z = 8. These results suggest that it is difficult for the observed population of high-redshift star-forming galaxies to achieve reionisation by z ~ 6 without a significant contribution from galaxies well below the detection limits, plus alterations in the escape fraction of ionising photons and/or continued vigorous star formation at z > 15.



rate research

Read More

118 - R.J. Bouwens 2009
We utilize the newly-acquired, ultra-deep WFC3/IR observations over the HUDF to search for star-forming galaxies at z~8-8.5, only 600 million years from recombination, using a Y_{105}-dropout selection. The new 4.7 arcmin**2 WFC3/IR observations reach to ~28.8 AB mag (5 sigma) in the Y_{105}J_{125}H_{160} bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman-Break selection technique to identify z~8-8.5 Y_{105}-dropouts. We find 5 likely z~8-8.5 candidates. The sources have H_{160}-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated beta of <~-2.5 (where f_{lambda}propto lambda^{beta}). This suggests that z~8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y_{105}-dropout candidates is smaller than the 20+/-6 sources expected assuming no evolution from z~6, but is consistent with the 5 expected extrapolating the Bouwens et al. 2008 LF results to z~8. These results provide evidence that the evolution in the LF seen from z~7 to z~3 continues to z~8. The remarkable improvement in the sensitivity of WFC3/IR has enabled HST to cross a threshold, revealing star-forming galaxies at z~8-9.
We present near-IR images, obtained with the Hubble Space Telescope (HST) and the WFC3/IR camera, of six passive and massive galaxies at redshift 1.3<z<2.4 (SSFR<10^{-2} Gyr^{-1}; stellar mass M~10^{11} M_{sun}), selected from the Great Observatories Origins Deep Survey (GOODS). These images, which have a spatial resolution of ~1.5 kpc, provide the deepest view of the optical rest-frame morphology of such systems to date. We find that the light profile of these galaxies is regular and well described by a Sersic model with index typical of todays spheroids. Their size, however, is generally much smaller than todays early types of similar stellar mass, with four out of six galaxies having r_e ~ 1 kpc or less, in quantitative agreement with previous similar measures made at rest-frame UV wavelengths. The images reach limiting surface brightness mu~26.5 mag arcsec^{-2} in the F160W bandpass; yet, there is no evidence of a faint halo in the galaxies of our sample, even in their stacked image. We also find that these galaxies have very weak morphological k-correction between the rest-frame UV (from the ACS z-band), and the rest--frame optical (WFC3 H-band): the Sersic index, physical size and overall morphology are independent or only mildly dependent on the wavelength, within the errors.
The addition of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) has led to a dramatic increase in our ability to study the z>6 Universe. The increase in the near-infrared (NIR) sensitivity of WFC3 over previous instruments has enabled us to reach apparent magnitudes approaching 29 (AB). This allows us to probe the rest-frame ultraviolet (UV) continuum, redshifted into the NIR at $z>6$. Taking advantage of the large optical depths at this redshift, resulting in the Lyman-alpha break, we use a combination of WFC3 imaging and pre-existing Advanced Camera for Surveys (ACS) imaging to search for z approx 7 over 4 fields. Our analysis reveals 29 new z approx 7 star forming galaxy candidates in addition to 16 pre-existing candidates already discovered in these fields. The improved statistics from our doubling of the robust sample of z-drop candidates confirms the previously observed evolution of the bright end of the luminosity function.
We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5<z<3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. The AGN are X-ray selected from the Chandra Deep Field South and have typical luminosities of 1E42 < L_X < 1E44 erg/s. Accreting black holes in this luminosity and redshift range account for a substantial fraction of the total space density and black hole mass growth over cosmic time; they thus represent an important mode of black hole growth in the universe. We find that the majority (~80%) of the host galaxies of these AGN have low Sersic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z~2 and z~0.05.
The Hubble Ultra Deep Field (HUDF) contains a significant number of B, V and i-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at z~4-6. These galaxies are too faint individually to accurately measure their radial surface brightness profiles. Their average light profiles are potentially of great interest, since they may contain clues to the time since the onset of significant galaxy assembly. We separately co-add V, i and z-band HUDF images of sets of z~4,5 and 6 objects, pre-selected to have nearly identical compact sizes and the roundest shapes. From these stacked images, we are able to study the averaged radial structure of these objects at much higher signal-to-noise ratio than possible for an individual faint object. Here we explore the reliability and usefulness of a stacking technique of compact objects at z~4-6 in the HUDF. Our results are: (1) image stacking provides reliable and reproducible average surface brightness profiles; (2) the shape of the average surface brightness profiles show that even the faintest z~4-6 objects are resolved; and (3) if late-type galaxies dominate the population of galaxies at z~4-6, as previous HST studies have shown, then limits to dynamical age estimates for these galaxies from their profile shapes are comparable with the SED ages obtained from the broadband colors. We also present accurate measurements of the sky-background in the HUDF and its associated 1-sigma uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا