Do you want to publish a course? Click here

Finitely generated maximal partial clones and their intersections

135   0   0.0 ( 0 )
 Added by Miguel Couceiro
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Let A be a finite non-singleton set. For |A|=2 we show that the partial clone consisting of all selfdual monotone partial functions on A is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on A. Moreover for |A| >= 3 we show that there are pairs of finitely generated maximal partial clones whose intersection is a non-finitely generated partial clone on A.



rate research

Read More

175 - Francois Couchot 2016
Let R be a commutative ring. If P is a maximal ideal of R whose a power is finitely generated then we prove that P is finitely generated if R is either locally coherent or arithmetical or a polynomial ring over a ring of global dimension $le$ 2. And if P is a prime ideal of R whose a power is finitely generated then we show that P is finitely generated if R is either a reduced coherent ring or a polynomial ring over a reduced arithmetical ring. These results extend a theorem of Roitman, published in 2001, on prime ideals of coherent integral domains.
166 - Cui Chen , Haifeng Lian 2012
$N$-derivation is the natural generalization of derivation and triple derivation. Let ${cal L}$ be a finitely generated Lie algebra graded by a finite dimensional Cartan subalgebra. In this paper, a sufficient condition for Lie $N$-derivation algebra of ${cal L}$ coinciding with Lie derivation algebra of ${cal L}$ is given. As applications, any $N$-derivation of Schr{o}dinger-Virasoro algebra, generalized Witt algebras, Kac-Moody algebras and their Borel subalgebras, is a derivation.
We show that every finitely generated conical refinement monoid can be represented as the monoid $mathcal V(R)$ of isomorphism classes of finitely generated projective modules over a von Neumann regular ring $R$. To this end, we use the representation of these monoids provided by adaptable separated graphs. Given an adaptable separated graph $(E, C)$ and a field $K$, we build a von Neumann regular $K$-algebra $Q_K (E, C)$ and show that there is a natural isomorphism between the separated graph monoid $M(E, C)$ and the monoid $mathcal V(Q_K (E, C))$.
180 - Francois Couchot 2016
A definition of quasi-flat left module is proposed and it is shown that any left module which is either quasi-projective or flat is quasi-flat. A characterization of local commutative rings for which each ideal is quasi-flat (resp. quasi-projective) is given. It is also proven that each commutative ring R whose finitely generated ideals are quasi-flat is of $lambda$-dimension $le$ 3, and this dimension $le$ 2 if R is local. This extends a former result about the class of arithmetical rings. Moreover, if R has a unique minimal prime ideal then its finitely generated ideals are quasi-projective if they are quasi-flat. In [1] Abuhlail, Jarrar and Kabbaj studied the class of commutative fqp-rings (finitely generated ideals are quasi-projective). They proved that this class of rings strictly contains the one of arithmetical rings and is strictly contained in the one of Gaussian rings. It is also shown that the property for a commutative ring to be fqp is preserved by localization. It is known that a commutative ring R is arithmetical (resp. Gaussian) if and only if R M is arithmetical (resp. Gaussian) for each maximal ideal M of R. But an example given in [6] shows that a commutative ring which is a locally fqp-ring is not necessarily a fqp-ring. So, in this cited paper the class of fqf-rings is introduced. Each local commutative fqf-ring is a fqp-ring, and a commutative ring is fqf if and only if it is locally fqf. These fqf-rings are defined in [6] without a definition of quasi-flat modules. Here we propose a definition of these modules and another definition of fqf-ring which is equivalent to the one given in [6]. We also introduce the module property of self-flatness. Each quasi-flat module is self-flat but we do not know if the converse holds. On the other hand, each flat module is quasi-flat and any finitely generated module is quasi-flat if and only if it is flat modulo its annihilator. In Section 2 we give a complete characterization of local commutative rings for which each ideal is self-flat. These rings R are fqp and their nilradical N is the subset of zerodivisors of R. In the case where R is not a chain ring for which N = N 2 and R N is not coherent every ideal is flat modulo its annihilator. Then in Section 3 we deduce that any ideal of a chain ring (valuation ring) R is quasi-projective if and only if it is almost maximal and each zerodivisor is nilpotent. This complete the results obtained by Hermann in [11] on valuation domains. In Section 4 we show that each commutative fqf-ring is of $lambda$-dimension $le$ 3. This extends the result about arithmetical rings obtained in [4]. Moreover it is shown that this $lambda$-dimension is $le$ 2 in the local case. But an example of a local Gaussian ring R of $lambda$-dimension $ge$ 3 is given.
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scalar. This generalizes an analogous result for group actions by automorphisms obtained by Dicks and Formanek, and Kharchenko.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا